m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
[0] Shuler MG, Bear MF, Reward timing in the primary visual cortex.Science 311:5767, 1606-9 (2006 Mar 17)

{778}
hide / / print
ref: Donoghue-1990.01 tags: Donoghue Suner Sanes rat motor cortex reorganization M1 tuning surprising date: 01-03-2012 03:30 gmt revision:4 [3] [2] [1] [0] [head]

PMID-2340869[0] Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions.

  1. Map out the motor cortex into vibrissa and forelimb areas using ICMS.
  2. Implant a simulating electrode in the vibrissa motor cortex.
  3. Implant EMG electrodes in the forearm.
  4. Sever the buccal and mandibular branches of the facial nerve.
  5. stimulate, and wait for forearm EMG to be elicited by ICMS. Usually occurs! Why? Large horizontal axons in motor cortex? Uncovering of silent synapses, and homeostatic modulation of firing rates?

____References____

[0] Donoghue JP, Suner S, Sanes JN, Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions.Exp Brain Res 79:3, 492-503 (1990)

{630}
hide / / print
ref: Shuler-2006.03 tags: reward V1 visual cortex timing reinforcement surprising date: 01-03-2012 02:33 gmt revision:4 [3] [2] [1] [0] [head]

PMID-16543459[0] Reward Timing in the Primary Visual Cortex

  • the responses of a substantial fraction of neurons in the primary visual cortex evolve from those that relate solely to the physical attributes of the stimuli to those that accurately predict the timing of reward.. wow!
  • rats. they put goggles on the rats to deliver full-fields retinal illumination for 400ms (isn't this cheating? full field?)
  • recorded from deep layers of V1
  • sensory processing does not seem to be reliable, stable, and reproducible...
  • rewarded only half of the trials, to see if the plasticity was a result of reward delivery or association of stimuli and reward.
  • after 5-7 sessions of training, neurons began to respond to the poststimulus reward time.
  • this was actually independent of reward delivery - only dependent on the time.
  • reward-related activity was only driven by the dominant eye.
  • individual neurons predict reward time quite accurately. (wha?)
  • responses continued even if the animal was no longer doing the task.
  • is this an artifact? of something else? what's going on? the suggest that it could be caused by subthreshold activity due to recurrent connections amplified by dopamine.

____References____