m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
{913}
hide / / print
ref: Ganguly-2011.05 tags: Carmena 2011 reversible cortical networks learning indirect BMI date: 01-23-2013 18:54 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-21499255[0] Reversible large-scale modification of cortical networks during neuroprosthetic control.

  • Split the group of recorded motor neurons into direct (decoded and controls the BMI) and indirect (passive) neurons.
  • Both groups showed changes in neuronal tuning / PD.
    • More PD. Is there no better metric?
  • Monkeys performed manual control before (MC1) and after (MC2) BMI training.
    • The majority of neurons reverted back to original tuning after BC; c.f. [1]
  • Monkeys were trained to rapidly switch between manual and brain control; still showed substantial changes in PD.
  • 'Near' (on same electrode as direct neurons) and 'far' neurons (different electrode) showed similar changes in PD.
    • Modulation Depth in indirect neurons was less in BC than manual control.
  • Prove (pretty well) that motor cortex neuronal spiking can be dissociated from movement.
  • Indirect neurons showed decreased modulation depth (MD) -> perhaps this is to decrease interference with direct neurons.
  • Quote "Studies of operant conditioning of single neurons found that conconditioned adjacent neurons were largely correlated with the conditioned neurons".
    • Well, also: Fetz and Baker showed that you can condition neurons recorded on the same electrode to covary or inversely vary.
  • Contrast with studies of motor learning in different force fields, where there is a dramatic memory trace.
    • Possibly this is from proprioception activating the cerebellum?

Other notes:

  • Scale bars on the waveforms are incorrect for figure 1.
  • Same monkeys as [2]

____References____

[0] Ganguly K, Dimitrov DF, Wallis JD, Carmena JM, Reversible large-scale modification of cortical networks during neuroprosthetic control.Nat Neurosci 14:5, 662-7 (2011 May)
[1] Gandolfo F, Li C, Benda BJ, Schioppa CP, Bizzi E, Cortical correlates of learning in monkeys adapting to a new dynamical environment.Proc Natl Acad Sci U S A 97:5, 2259-63 (2000 Feb 29)
[2] Ganguly K, Carmena JM, Emergence of a stable cortical map for neuroprosthetic control.PLoS Biol 7:7, e1000153 (2009 Jul)