m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
[0] Isoda M, Hikosaka O, Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement.J Neurosci 28:28, 7209-18 (2008 Jul 9)

[0] Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP, Chronic, multisite, multielectrode recordings in macaque monkeys.Proc Natl Acad Sci U S A 100:19, 11041-6 (2003 Sep 16)

[0] Recanzone GH, Schreiner CE, Merzenich MM, Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys.J Neurosci 13:1, 87-103 (1993 Jan)

[0] Thach WT, Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum.J Neurophysiol 41:3, 654-76 (1978 May)

{1257}
hide / / print
ref: -0 tags: Anna Roe optogenetics artificial dura monkeys intrinisic imaging date: 09-30-2013 19:08 gmt revision:3 [2] [1] [0] [head]

PMID-23761700 Optogenetics through windows on the brain in nonhuman primates

  • technique paper.
  • placed over the visual cortex.
  • Injected virus through the artificial dura -- micropipette, not CVD.
  • Strong expression:
  • See also: PMID-19409264 (Boyden, 2009)

{1149}
hide / / print
ref: -0 tags: locomotion decerebrated monkeys spinal cord section STN stimulation date: 03-01-2012 23:53 gmt revision:0 [head]

PMID-7326562 Locomotor control in macaque monkeys

  • Were not able to induce walking with in monkeys with a sectioned spinal cord
  • Were able to induce walking motion by pulsed stimulation of the STN, with varying walking speed with varying currents!
  • Detailed, informative report, more than I have time to record here today.

{654}
hide / / print
ref: Isoda-2008.07 tags: STN switching motor control scaccades monkeys electrophysiology DBS date: 02-22-2012 15:02 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-18614691[0] Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement.

  • we found neurons that showed a phasic change in activity specifically before volitionally controlled saccades which were switched from automatic saccades
  • A majority of switch-related neurons were considered to inhibit no-longer-valid automatic processes, and the inhibition started early enough to enable the animal to switch.
  • We suggest that the STN mediates the control signal originated from the medial frontal cortex and implements the behavioral switching function using its connections with other basal ganglia nuclei and the superior colliculus.
  • neurons have a really high rate of spiking - what we observe in DBS surgeries.
  • nice. There may be alternate explanations, but this one is plausible.

____References____

{1107}
hide / / print
ref: Georgopoulos-1983.08 tags: STN monkeys primate Georgopoulos globus pallidus date: 02-10-2012 18:57 gmt revision:2 [1] [0] [head]

PMID-6875658[0] Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey.

  • Step tracking task in monkeys; wrist flexion and extension.
    • first one in monkeys, apparently.
    • 87 neurons in GP, 36 in GPi, 29 in STN.
  • Linear tuning to direction and distance, same as in motor cortex by Georgopoulos.
    • More likely to see frequency increase.
  • Earlier firing rate change in STN than GPe than GPi.
  • Two patterns of firing in the globus pallidus external:
    • more frequent: high discharge rate interrupted with pauses of varying duration
    • less frequent: low average discharge rate with very high frequency bursts.
  • GPi: high frequency with frequent bursts.
  • GPi/e generally high firing rate - 80-100 Hz, with frequent bursts.
    • But not as deep movement tuning as M1.
  • Only primates have projections from the motor cortex to the STN.
    • This seems like an evolutionarily recent development -- apparently the cortex needs the extra level of control?

See also citing articles: http://scholar.google.com/scholar?cites=16339220378239936453&as_sdt=5,34&sciodt=0,34&hl=en

____References____

[0] Georgopoulos AP, DeLong MR, Crutcher MD, Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey.J Neurosci 3:8, 1586-98 (1983 Aug)

{951}
hide / / print
ref: Schwartz-1994.07 tags: Schwartz drawing spiral monkeys population vector PV date: 01-16-2012 18:52 gmt revision:1 [0] [head]

PMID-8036499[0] Direct cortical representation of drawing

____References____

[0] Schwartz AB, Direct cortical representation of drawing.Science 265:5171, 540-2 (1994 Jul 22)

{313}
hide / / print
ref: Nicolelis-2003.09 tags: nicolelis recording electrode monkeys MEA date: 01-04-2012 01:23 gmt revision:3 [2] [1] [0] [head]

PMID-12960378 Chronic, multisite, multielectrode recordings in macaque monkeys.

  • max 412 neurons, snr 5
  • up to 18 months, with precipitous decline
  • Miguel is the first author. well, that only makes sense.

____References____

{959}
hide / / print
ref: -0 tags: Evarts force pyramidal tract M1 movement monkeys conduction velocity tuning date: 01-03-2012 03:25 gmt revision:3 [2] [1] [0] [head]

PMID-4966614 Relation of pyramidal tract activity to force exerted during voluntary movement.

  • One of the pioneering studies of electrophysiology in awake behaving animals; single electrode juice reward headposting: many followed.
  • {960} looked at conduction velocity, which we largely ignore now -- most highly mylenated axons are silent during motor quiescence and show phasic activity during movement.
    • Lower conduction velocity PTNs show + and - FR modulations. Again from [5]
  • [6] showed that PTN activity preceded EMG activity, implying that it was efferent rather than afferent feedback that was controlling the fr. as expected.
  • task: wrist flexion & extension under load.
  • task in monkey's home cage for a period of three months; monkeys carried out 3000 trials or more of the task (must have had strong wrists!)
  • Head fixated the monkeys for about 10 days prior unit recordings; "The monkeys learned to be quite cooperative in reentering the chair in the morning, since entrance to the chair was rewarded by the fruit juice of their choice (grape, apple, or orange). Indeed, some monkeys continued to work even in the presence of free water!
    • Maybe I should give mango some Hawaiian punch as well?
  • Mesured antidromic responses with a permanent electrode in the ipsilateral medullary pyramid.
  • Used glass insulated platinum-iridium electrodes [11]
  • traces are clean, very clean. I wonder if good insulation (in this case, glass) has anything to do with it?
  • controlled for displacement by varying the direction of load; PTNs seem to directly control muscles.
    • Fire during acceleration and movement for no load
    • Fire during load and co-contraction when loaded.
  • FR also related to δF/δt\delta F / \delta t : FR higher during a low but rising force than a high but falling force.
  • more than 100 PTN recorded from the precentral gyrus, but only 31' had clear and consistent relation to performance on the task.
    • 16 units on extension loads, 7 units flexion loads
    • It was only one joint afterall..
  • Cells responding to the same movement (flexion or extension) were often founf on the same vertical electrode tract.
  • Very little response to joint position.
  • Very clean moculations -- neurons are almost silent if there is no force production; FR goes up to 50-80Hz.
  • Prior to the exp Evart expected a position tuning model, but saw clear evidence of force tuning.
  • Group 1 muscle afferents have now been shown to project to the motor cortex of both monkey [1] and cat [9]. Make sense, as if the ctx is to control force, it needs feedback regarding its production.
  • Caveats: many muscles were involved in the study, mainly due to postural effects, and having one or two controls poorly delineates what is going on in the motor ctx.
    • Plus, all the muscles controlling the figers come into play -- the manipulandum must be gripped firmly, esp to resist extension loads.

{974}
hide / / print
ref: Fitzsimmons-2007.05 tags: Fitzsimmons nicolelis stimluation ICMS owl monkeys date: 01-01-2012 00:12 gmt revision:2 [1] [0] [head]

PMID-17522304[0] Primate reaching cued by multichannel spatiotemporal cortical microstimulation.

  • Good intro and discussion. The rest of it is familiar - was there!
  • Monkeys did not immediately generalize vibration stimuli to ICMS. But then again, owl monkeys are not terribly intelligent. c.f. Romo.

____References____

[0] Fitzsimmons NA, Drake W, Hanson TL, Lebedev MA, Nicolelis MA, Primate reaching cued by multichannel spatiotemporal cortical microstimulation.J Neurosci 27:21, 5593-602 (2007 May 23)

{906}
hide / / print
ref: Wyler-1980.08 tags: Wyler Lange Robbins operant conditioning motor neurons contralateral bilateral specificity monkeys motor learning date: 12-06-2011 06:36 gmt revision:1 [0] [head]

PMID-6772272 Operant control of precentral neurons: bilateral single unit conditioning.

  • Used bilateral electrodes.
  • One neuron operantly conditioned, one not.
  • Switched the conditioned / controlled after performance was attained.
  • Evidence: neurons can be individually tuned, and operant control is not the result of spinal-level conditioning or change.
    • It is not the result of increased attention or increased muscle tone.
  • Simple question, simple paper.

{625}
hide / / print
ref: Recanzone-1993.01 tags: plasticity cortex learning auditory owl monkeys SUA date: 10-06-2008 22:46 gmt revision:1 [0] [head]

PMID-8423485[0] Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys

  • Measured tonotopic organization (hence plasticity) in the owl monkey auditory cortex following training on a frequency discrimination task.
  • improvement in performance correlates with an improvement in neuronal tuning.
  • two controls:
    • monkeys that were engaged in a tactile discrimination task
    • monkeys that received the same auditory stimuli but had no reason to attend to it
  • lots of delicious behavior graphs

____References____

{284}
hide / / print
ref: Thach-1978.05 tags: monkeys motor control M1 cerebellum electropysiology date: 04-09-2007 19:53 gmt revision:3 [2] [1] [0] [head]

PMID-96223[0] Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum.

  • recorded from M1 and interpositus/dentate nucleus of the cerebellum.
  • three classes of response in the interpositus/dentate and M1
    1. some in relation to the pattern of muscle activity
    2. some in relation to the position of the wrist
    3. some in relation to the next intended movement.

____References____

{132}
hide / / print
ref: notes-0 tags: LSD rhesus monkeys date: 0-0-2007 0:0 revision:0 [head]

http://hardm.ath.cx:88/pdf/LSDRhesusMonkeys.pdf

  • monkeys had a sucking behavior after large doses
  • human babies have synestesia
  • perhaps LSD has some endogenous equivalent found in babies?