m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
{695}
hide / / print
ref: -0 tags: alopex machine learning artificial neural networks date: 03-09-2009 22:12 gmt revision:0 [head]

Alopex: A Correlation-Based Learning Algorithm for Feed-Forward and Recurrent Neural Networks (1994)

  • read the abstract! rather than using the gradient error estimate as in backpropagation, it uses the correlation between changes in network weights and changes in the error + gaussian noise.
    • backpropagation requires calculation of the derivatives of the transfer function from one neuron to the output. This is very non-local information.
    • one alternative is somewhat empirical: compute the derivatives wrt the weights through perturbations.
    • all these algorithms are solutions to the optimization problem: minimize an error measure, E, wrt the network weights.
  • all network weights are updated synchronously.
  • can be used to train both feedforward and recurrent networks.
  • algorithm apparently has a long history, especially in visual research.
  • the algorithm is quite simple! easy to understand.
    • use stochastic weight changes with a annealing schedule.
  • this is pre-pub: tables and figures at the end.
  • looks like it has comparable or faster convergence then backpropagation.
  • not sure how it will scale to problems with hundreds of neurons; though, they looked at an encoding task with 32 outputs.