m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
[0] Boline J, Ashe J, On the relations between single cell activity in the motor cortex and the direction and magnitude of three-dimensional dynamic isometric force.Exp Brain Res 167:2, 148-59 (2005 Nov)

[0] Sergio LE, Hamel-Paquet C, Kalaska JF, Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.J Neurophysiol 94:4, 2353-78 (2005 Oct)[1] Hatsopoulos NG, Encoding in the motor cortex: was evarts right after all? Focus on "motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks".J Neurophysiol 94:4, 2261-2 (2005 Oct)[2] Cooke JD, Brown SH, Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern.J Neurophysiol 63:3, 465-72 (1990 Mar)[3] Almeida GL, Hong DA, Corcos D, Gottlieb GL, Organizing principles for voluntary movement: extending single-joint rules.J Neurophysiol 74:4, 1374-81 (1995 Oct)[4] Gottlieb GL, Latash ML, Corcos DM, Liubinskas TJ, Agarwal GC, Organizing principles for single joint movements: V. Agonist-antagonist interactions.J Neurophysiol 67:6, 1417-27 (1992 Jun)[5] Corcos DM, Agarwal GC, Flaherty BP, Gottlieb GL, Organizing principles for single-joint movements. IV. Implications for isometric contractions.J Neurophysiol 64:3, 1033-42 (1990 Sep)[6] Gottlieb GL, Corcos DM, Agarwal GC, Latash ML, Organizing principles for single joint movements. III. Speed-insensitive strategy as a default.J Neurophysiol 63:3, 625-36 (1990 Mar)[7] Corcos DM, Gottlieb GL, Agarwal GC, Organizing principles for single-joint movements. II. A speed-sensitive strategy.J Neurophysiol 62:2, 358-68 (1989 Aug)[8] Gottlieb GL, Corcos DM, Agarwal GC, Organizing principles for single-joint movements. I. A speed-insensitive strategy.J Neurophysiol 62:2, 342-57 (1989 Aug)[9] Ghez C, Gordon J, Trajectory control in targeted force impulses. I. Role of opposing muscles.Exp Brain Res 67:2, 225-40 (1987)[10] Sainburg RL, Ghez C, Kalakanis D, Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms.J Neurophysiol 81:3, 1045-56 (1999 Mar)

[0] Wetts R, Kalaska JF, Smith AM, Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles.J Neurophysiol 54:2, 231-44 (1985 Aug)

[0] Sergio LE, Kalaska JF, Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation.J Neurophysiol 89:1, 212-28 (2003 Jan)

{1445}
hide / / print
ref: -2018 tags: cortex layer martinotti interneuron somatostatin S1 V1 morphology cell type morphological recovery patch seq date: 03-06-2019 02:51 gmt revision:3 [2] [1] [0] [head]

Neocortical layer 4 in adult mouse differs in major cell types and circuit organization between primary sensory areas

  • Using whole-cell recordings with morphological recovery, we identified one major excitatory and seven inhibitory types of neurons in L4 of adult mouse visual cortex (V1).
  • Nearly all excitatory neurons were pyramidal and almost all Somatostatin-positive (SOM+) neurons were Martinotti cells.
  • In contrast, in somatosensory cortex (S1), excitatory cells were mostly stellate and SOM+ cells were non-Martinotti.
  • These morphologically distinct SOM+ interneurons correspond to different transcriptomic cell types and are differentially integrated into the local circuit with only S1 cells receiving local excitatory input.
  • Our results challenge the classical view of a canonical microcircuit repeated through the neocortex.
  • Instead we propose that cell-type specific circuit motifs, such as the Martinotti/pyramidal pair, are optionally used across the cortex as building blocks to assemble cortical circuits.
  • Note preponderance of axons.
  • Classifications:
    • Pyr pyramidal cells
    • BC Basket cells
    • MC Martinotti cells
    • BPC bipolar cells
    • NFC neurogliaform cells
    • SC shrub cells
    • DBC double bouquet cells
    • HEC horizontally elongated cells.
  • Using Patch-seq

{1425}
hide / / print
ref: -0 tags: Kato fear conditioning GABA auditory cortex mice optogenetics SOM PV date: 02-04-2019 19:09 gmt revision:0 [head]

PMID-29375323 Fear learning regulates cortical sensory representation by suppressing habituation

  • Trained mice on CS+ and CS --> lick task.
    • CS+ = auditory tone followed by tailshock
    • CS- = auditory tone (both FM modulated, separated by 0.5 - 1.0 octave).
    • US = licking.
  • VGAT2-ChR2 or PV-ChR2
  • GABA-ergic silencing of auditory cortex through blue light illumination abolished behavior difference following CS+ and CS-.
  • Used intrinsic imaging to locate A1 cortex, then AAV - GCaMP6 imaging to lcoated pyramidal cells.
  • In contrast to reports of enhanced tone responses following simple fear conditioning (Quirk et al., 1997; Weinberger, 2004, 2015), discriminative learning under our conditions caused no change in the average fraction of pyramidal cells responsive to the CS+ tone.
    • Seemed to be an increase in suppression, and reduced cortical responses, which is consistent with habituation.
  • Whereas -- and this is by no means surprising -- cortical responses to CS+ were sustained at end of tone following fear conditioning.
  • ----
  • Then examined this effect relative to the two populations of interneurons, using PV-cre and SOM-cre mice.
    • In PV cells, fear conditioning resulted in a decreased fraction of cells responsive, and a decreased magnitude of responses.
    • In SOM cells, CS- responses were enhanced, while CS+ were less enhanced (the main text seems like an exaggeration c.f. figure 6E)
  • This is possibly the more interesting result of the paper, but even then the result is not super strong.

{1401}
hide / / print
ref: -2016 tags: somatostatin interneurons review date: 02-11-2018 18:08 gmt revision:0 [head]

PMID-27225074 Somatostatin-expressing neurons in cortical networks.

  • Urban-Ciecko J1, Barth AL1.
  • High (~ 10hz) tonic (constitutive) firing rate. All GABA.
  • Somatostatin, a neuropeptide, is of ill-defined role. Unknown when it is released.
  • SST interneurons receive diffuse input from cortical pyramidal cells, but each synapse is of low strength.
  • SST intererneurons are frequently electrically connected through gap junctions, but almost never through electrical synapses. The resulting network can extend for hundreds of microns, and has been shown to cause synchronized firing when cells are active.
  • Common anesthetics (isoflurane, urethane) profoundly silence the SSTs.
  • Wide diversity of axonal and dendritic branching patterns, targeting both apical (20%) and distal pyramidal cell dendrites.
  • SST neuron activity is reduced in Dravet syndrome.
  • SST neurons have also been implicated in schizophrenia; affected individuals show decreased SST mRNA and mislocalization of SST interneurons.

{828}
hide / / print
ref: RodriguezOroz-2001.09 tags: STN SNr parkinsons disease single unit recording spain 2001 tremor oscillations DBS somatotopy organization date: 02-22-2012 18:24 gmt revision:12 [11] [10] [9] [8] [7] [6] [head]

PMID-11522580[0] The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics

  • Looks like they discovered exactly what we have discovered ... only in 2001. This is both good and bad.
    • From the abstract: "Neurones responding to movement were of the irregular or tonic type, and were found in the dorsolateral region of the STN. Neurones with oscillatory and low frequency activity did not respond to movement and were in the ventral one-third of the nucleus. Thirty-eight tremor-related neurones were recorded."
  • Again, from the abstract: "The findings of this study indicate that the somatotopic arrangement and electrophysiological features of the STN in Parkinson's disease patients are similar to those found in monkeys."
  • It may be that we want to test differential modulation / oscillation: look for differences between rest and activity, if there is sufficient support for both these in the files we have.
  • These people were much, much more careful about localization of their single-electrode tracks. E.g. they calculated electrode location relative the DBS electrode stereotatically, and referenced this to the postoperative MRI location of the treatment electrode.
  • Many more (32% of 350 neurons) responded to active or passive movement.
  • Of this same set, 15% (31 neurons) had a firing rate with rhythmical activity; 38 neurons had rhythmic activity associated with oscillatory EMG, but most of these were responsive to passive stimulation.
  • Autocorrelation of the neuronal bursting and tremor peaked at mean 7Hz, while autocorr. of EMG peaked at mean 5Hz.
  • This whole paragraph is highly interesting: ''The neuronal response associated with active movements was studied by simultaneous recording of neuronal EMG activity of the limbs. Five tremor-related neurons, recorded while a voluntary movement was performed, were available for analysis. Voluntary activation of a particular limb segment arrested the tremor. This was associated with a change in the discharges of the recorded neuron, which fired at a slower rate and in synchrony with the voluntary movement. On occasions, freezing of the voluntary movement ensued and tremor reappeared, changing the neuronal activity back to the typical 4-5Hz tremor-related activity. The cross-correlation analysis of two such neurons showed a peak frequency of 4.63 and 4.88 Hz for tremor-related activity, and 1.5 to 1.38 Hz during voluntary movement. Whether neuronal discharges in the STN preceded or followed EMG activity of the limbs could not be precisely established under the present conditions.
  • Somatotopic representation in the STN is expected from normal and MTPT-treated monkeys. Indeed, somatotopy is enhanced int he GPm of MTPT-treated monkeys.
    • This somatotopy is likely to result from organized afferent from the primary motor cortex (M1) to dorsolateral STN; this is the target of DBS treatment. Ventral and medial STN seems to project to associative and limbic cortical regions.
    • It seems they think the STN is generally not diseased, it is just a useful target for stimulating without evoked movement as in M1. This is consistent with optogenetic studies by Deisseroth [1].
    • Supporting this: "DBS of STN in Parkinson's disease improves executive motor functions, but aggravates conditional associative learning.
  • Interesting: In Parkinson's disease patients with tremor, Levy and colleagues found synchronization and a high firing rate (>10Hz) while recording pairs of neurons >600um apart.
  • Recordings of cortical activity through EEG and STN LFP showed significant coherence in the beta and gamma frequency bands during movement - consistent with corticosubthalamic motor projection. ... and suggest that the STN neurons involved in parkinsonian tremor are the same as the ones ativated during the performance of a voluntary movement. (! -- I agree with this.)
  • More: The reciprocal inhibitory-excitatory connections tightly linking the GPe and the STN may generate self-perpetuating oscillations.

Old notes:

  • this paper concentrates on STN electrophysiology in PD.
    • has a rather excellent list of references.
  • found a somatotopic organization in the STN, with most motor-related units more irregular and in the dorsolateral STN.
  • found a substantial fraction of tremor-synchronized neurons.
  • conclude that the somatotopic organization is about the same as in monkeys (?) (!)
  • M1 projects to STN, as verified through anterograde tracing studies. [1] These neurons increase their firing rate in response to passive movements.
  • there appears to be a relatively-complete representation of the body in the dorsolateral STN.

____References____

[0] Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockkman V, Vitek J, DeLong MR, Obeso JA, The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics.Brain 124:Pt 9, 1777-90 (2001 Sep)
[1] Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K, Optical deconstruction of parkinsonian neural circuitry.Science 324:5925, 354-9 (2009 Apr 17)

{1106}
hide / / print
ref: -0 tags: microstim ICMS axons soma Nowak NMDA date: 01-27-2012 23:30 gmt revision:1 [0] [head]

PMID-9504843 Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements.

  • Slice experiments / in vitro.
  • The chronaxie for orthodromic activation was similar to that for axonal activation, but was 40 times smaller than the chronaxie for direct cell body activation. This suggests that, whenever a postsynaptic response is elicited after electrical stimulation of the cortical gray matter, axons (either axonal branches or axon initial segments), but not cell bodies, are the neuronal elements activated.

PMID-9504844 Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments.

  • Blocked soma and proximal axons / dendrites from firing AP through iontophoresis of NMDA.
  • When the NMDA-induced depolarization block was performed at the site of electrical stimulation, an unexpected increase in the amplitude of the orthodromic (backwards, into the white matter) responses was observed.
    • Possibly due to an increase in axonal excitability (?)
    • Superexitability eventually washed out, leading to responses that was 15-20% lower than before NMDA soma / proximal axon block.
  • "Since the neocortex is organised as a network of local and long-range reciprocal connections, great attention must be paid to the interpretation of data obtained with electrical stimulation."

{87}
hide / / print
ref: Nicolelis-1993 tags: neurons somatosensory nicolelis rats thalamus date: 01-03-2012 23:30 gmt revision:2 [1] [0] [head]

from the Scientific American:

  • blocking (single?) neuron activity in S1 cortex affects the responses of VPM neurons in the thalamus - indicating that descending feedback signals in the cortex to the VPM could have a major role in modulating the ascending information.
  • if you implant a cuff electrode aroung the trigeminal nerve, the evoked responses in S1 and VPM are dependent on the behavioral state of the animal (of course!). this effect is so pronounced that, when the rats were not 'paying attention', only the first stimulus of a series evoked a response; when the rat was whisking, stimulation was faithfully reported.

{665}
hide / / print
ref: Cho-2007.03 tags: SOM self organizing maps Prinicpe neural signal reconstruction recording compression date: 01-03-2012 00:59 gmt revision:2 [1] [0] [head]

PMID-17234384[0] Self-organizing maps with dynamic learning for signal reconstruction.

  • They use a dynamically-learning self-organizing map to compress (encode) continuous neural signals so they can be sent over a wireless link. In this way, you do not have to sort and bin on the device (but this is relatively easy; it seems that their SOM is more computationally expensive than simple thresholding.) Nonetheless, it is an interesting approach.

____References____

[0] Cho J, Paiva AR, Kim SP, Sanchez JC, Príncipe JC, Self-organizing maps with dynamic learning for signal reconstruction.Neural Netw 20:2, 274-84 (2007 Mar)

{973}
hide / / print
ref: PENFIELD-1963.12 tags: Penfield memory stimulation music epilepsy awesome date: 12-29-2011 22:21 gmt revision:4 [3] [2] [1] [0] [head]

PMID-14090522[0] The Brains record of auditory and visual experience -- A final summary and discussion

  • 102 pages. basically, this is a book.
  • Electrical stimulation causes 'hallucinations of things previously seen or heard or experienced.'
    • 'Both the experience and the interpretation are produced by discharge in the temporal cortex and not in other areas'
    • Experiential responses only followed stimulation in the temporal lobe.
  • These tests were done in an effort to locate the source of a seizure.
  • Damn, references the Caliph at Cordova as the first to document epileptic hallucinations (1519!)
    • And Hughlings Jackson (1888)!
  • Extirpation of memories elicited by ustim to an area persist after removal of that area.
  • Performed 1,288 surgeries, 520 of them for seizures in the temporal lobes, 40 of these with experiential responses, and 24 of those with experiential epileptic hallucinations.
    • Many of the patients' epilepsy was caused by ischemia, perhaps developmental; others by glioma..
  • Stimulation of the white matter has never produced an experiential response. Deep stimulation in the amygdala or hippocampus (??) also failed to elicit experiential responses.
  • Talks about 'difficult birth' -- was/is this the cause of some epilepsy? Or has that been discounted?
  • Buncha stuff on human cortical anatomy / topology, which is not so interesting to me.
  • Walker on the chimpanzee (1938) showed that the temporal cortex has no direct connections to the thalamus except posteriorly, where projections are received from nucleus lateralis posterior and pulvinar (visual attention), and within the transverse temporal gyri which receive auditory afferent projections from the medial geniculate body.
    • Also receives large fiber projections from the hippocampus.
  • This is absolutely fascinating. Memories, art, songs (music, so much music -- temporal lobe!), childbirth, counting, childhood molestation, a whole host of experiences were brought forth by electrical stimulation.
    • Case 9. E. Le. This 44-year old woman began to have seizures at age 22 during a pregnancy. The attack pattern was: (1) flushing of face and neck (2) automatism; (3) occasional generalized seizure. During and automatism she was apt to say, "I am alright". Then she would walk about the room and show marked affection toward anyone who happened to be present.
    • Repeated without warning: She said, "Yes, another experience, a different experience." Then she added, "A true experience. This man, Mr. Meerburger, he, oh well, he drinks. Twice his boy has run away. I went to the store once for an ice cream cone and I saw that he was back, and I said 'Hmm, he is back,' and the lady asked me 'What is the matter,' and I didn't know how to explain so I said, 'Well you know Mr. Meerburger drinks.' I thought that was the easiest way but later mother told me, no, and it made it a lot worse."
    • What surprises me is the relative lack of breadth in these --many of the responses to stimulation are quite similar, over a wide range of cortex, many of them very dream-like in features and recall.
      • Their impression: It is often evident that ''each stimulation leaves behind a facilitating influence so that the same response follows each stimulation and this facilitation may cause a given response to follow stimulation at one to three centimeters distance. Illustrated by the case 5, D.F
      • This deserves far more experimentation! E.g. ask the patient to think about something, and see if the same stimulation elicits different memories.
    • Another patient had a series of experiential hallucinations which all involved some aspect of 'grabbing' -- a man grabbing a rifle from a cadet during a parade, a man snatching his hat from the hat-check girl, grabbing a stick from a dog's mouth. In this epileptic, an instance of 'grabbing' was the ictal focus. Amazing.
  • Points out that stimulation must activate a great number of neural circuits, only one specific memory is recalled -- indicating that there is strong inhibition for mutual-exclusion.
  • Non-dominant, non-speech temporal cortex is almost always involved in interpretation: stimulation produces visual experiences, or visual interpretive illusions (change in distance or speed).
    • Stimluation also produces changes in the state-of-mind.
  • Certain sorts of experiences seem absent:
    • The times of making up ones mind
    • Times of carrying out skilled acts, writing messages or adding figures,
    • Eating food
    • Sexual excitement and experience (unless the patients may have self-censored this?)
    • Intense pain or suffering.
    • These things do not involve interpretation, and the focus of attention is not on the way that things are heard or seen.
  • They would remove quite large sections of the temporal lobe!
    • Still, the excision of these areas does not abolish memory: it does not contain a record of the past.
    • Yet stimulation in the temporal lobe recalls memories as nowhere else does.
  • There is a sharp frontier / boundary between auditory and visual temporal cortices and interpretive -- millimeters movement may change phosphenes into recall of a familiar person.
  • Note the comparison between speech cortex (dominant) and interpretive -- stimulation of speech cortex produces no speech, only aphasia, whereas stimulation of non-dominant termporal cortex forces recall.
  • "He who is faithfully analysing many cases of epilepsy is doing far more than studying epilepsy"

____References____

[0] PENFIELD W, PEROT P, THE BRAIN'S RECORD OF AUDITORY AND VISUAL EXPERIENCE. A FINAL SUMMARY AND DISCUSSION.Brain 86no Issue 595-696 (1963 Dec)

{926}
hide / / print
ref: Nicolelis-1998.11 tags: spatiotemporal spiking nicolelis somatosensory tactile S1 3b microwire array rate temporal coding code date: 12-28-2011 20:42 gmt revision:3 [2] [1] [0] [head]

PMID-10196571[0] Simultaneous encoding of tactile information by three primate cortical areas

  • owl monkeys.
  • used microwires arrays to decode the location of tactile stimuli; location was encoded through te population, not within single units.
  • areas 3b, S1 & S2.
  • used LVQ (learning vector quantization) backprop, LDA to predict/ classify touch trials; all yielded about the same ~60% accuracy. Chance level 33%.
  • Interesting: "the spatiotemporal character of neuronal responses in the SII cortex was shown to contain the requisite information for the encoding of stimulus location using temporally patterned spike sequences, whereas the simultaneously recorded neuronal responses in areas 3b and 2 contained the requisite information for rate coding."
    • They support this result by varying bin widths and looking at the % of correctly classivied trials. in SII, increasing bin width decreases (slightly but significantly) the prediction accuracy.

____References____

[0] Nicolelis MA, Ghazanfar AA, Stambaugh CR, Oliveira LM, Laubach M, Chapin JK, Nelson RJ, Kaas JH, Simultaneous encoding of tactile information by three primate cortical areas.Nat Neurosci 1:7, 621-30 (1998 Nov)

{596}
hide / / print
ref: Huesler-2000.1 tags: EMG synchronization Hepp-Raymond grip finger force isometric date: 09-07-2008 17:26 gmt revision:3 [2] [1] [0] [head]

PMID-11081826 EMG activation patterns during force production in precision grip. III. Synchronisation of single motor units.

  • synchronization observed in 78% of intrinsic finger muscles (within the hand itself) and 45% of extrinsic finger muscles.
    • force increase was not necessarily correlated to increased synchronization; rather, high synchronization occurred at low force production.
  • instrinsic muscles have higher force sensitivity & higher recruitment thresholds.
  • other articles in the series:
    • PMID-7615027 EMG activation patterns during force production in precision grip. I. Contribution of 15 finger muscles to isometric force.
    • PMID-7615028 EMG activation patterns during force production in precision grip. II. Muscular synergies in the spatial and temporal domain.

Dr. hepp-Raymond himself seems to be a prolific researcher, judging from his pubmed search results. e.g.:

  • PMID-18272868 Absence of gamma-range corticomuscular coherence during dynamic force in a deafferented patient.
    • quote: proprioceptive information is mandatory in the genesis of gamma-band CMC (corticomuscular coherence) during the generation and control of dynamic forces.

{104}
hide / / print
ref: Boline-2005.11 tags: electrophysiology motor cortex force isometric Ashe 2005 date: 04-09-2007 22:39 gmt revision:3 [2] [1] [0] [head]

this seems to be the same as {339}, with a different pubmed id & different author list. bug in the system!

PMID-16193273[0] On the relations between single cell activity in the motor cortex and the direction and magnitude of three-dimensional dynamic isometric force* the majority of cells responded to direction

  • few to the magnitude,
  • and ~10% to the direction & magnitude
  • control of static and dynamic motor systems is based on a common control process!
  • 2d task, monkeys, single-unit recording, regression analysis.

____References____

{277}
hide / / print
ref: Sergio-2005.1 tags: isometric motor control kinematics kinetics Kalaska date: 04-09-2007 22:33 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-15888522[0] Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.

  • see [1]
  • recorded 132 units from the caudal M1
  • two tasks: isometric and movement of a heavy mass, both to 8 peripheral targets.
    • target location was digitized using a 'sonic digitizer'. trajectories look really good - the monkey was well trained.
  • idea: part of M1 functions near the output (of course)
    • evidence supporting this: M1 rasters during movement of the heavy mass show a triphasic profile: one to accelerate the mass, one to decelerate it, and another to hold it steady on target. see [2,3,4,5,6,7,8,9,10]

____References____

{343}
hide / / print
ref: Wetts-1985.08 tags: Kalaska isometric motor control dentate cerebellum purkinje M1 pyramidal tract direction tuning date: 04-09-2007 19:54 gmt revision:0 [head]

PMID-3928831[0] Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. by kalaska concering the interpositus dentate & isometric task.

  • the dentate nucleus sends afferents to the premotor areas. GABAergic inhibition from purkinje cells.
  • not so much tuning in the dentate nucleus as M1, but positive correlation was found.
  • Purkinje cells had a general low-order negative tuning to muscle activations.

____References____

{340}
hide / / print
ref: Sergio-2003.01 tags: M1 isometric force posture direction SUA Kalaska date: 04-09-2007 15:22 gmt revision:1 [0] [head]

PMID-12522173[0] Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation.

  • isometric joystick was positioned at 5-9 different locations in a plane in the monkey's workspace.
  • discharge of all cells varied with position and force.
    • Cell directional tuning tended to shift systematically with hand location even though the direction of static force output at the hand remained constant
      • would this be true if the forces were directed in muscle coordinates?
  • "provides further evidence that MI contributes to the transformation between extrinsic and intrinsic representations of motor output during isometric force production."

____References____

{25}
hide / / print
ref: Dum-2003.01 tags: cerebellum dentate_nucleus projections cerebrum prefrontal posterior_pareital M1 PM thalamus somatotopic date: 03-11-2007 04:42 gmt revision:2 [1] [0] [head]

PMID-12522208 An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex

  • the dentate nucleus of the cerebellum projects to (at least four sections of if not all) of the cerebral cortex in a spatially-organized way.
    • dentate nucleus projects via the ventral anterior (VA) nucleus of the thalamus
    • dentate nucleus receives projections from the lateral hemispheres of the cerebellum (neocerebellum), which receives extensive collaterals from the pyramidal tract.

{20}
hide / / print
ref: bookmark-0 tags: neural_networks machine_learning matlab toolbox supervised_learning PCA perceptron SOM EM date: 0-0-2006 0:0 revision:0 [head]

http://www.ncrg.aston.ac.uk/netlab/index.php n.b. kinda old. (or does that just mean well established?)