m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
[0] Mehring C, Rickert J, Vaadia E, Cardosa de Oliveira S, Aertsen A, Rotter S, Inference of hand movements from local field potentials in monkey motor cortex.Nat Neurosci 6:12, 1253-4 (2003 Dec)

[0] Vyssotski AL, Serkov AN, Itskov PM, Dell'Omo G, Latanov AV, Wolfer DP, Lipp HP, Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording.J Neurophysiol 95:2, 1263-73 (2006 Feb)[1] Otto KJ, Johnson MD, Kipke DR, Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.IEEE Trans Biomed Eng 53:2, 333-40 (2006 Feb)

{1350}
hide / / print
ref: -0 tags: ultrasonic BMI monkey LFP intan nordic Ozturk UCSD date: 09-30-2016 19:38 gmt revision:2 [1] [0] [head]

A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

  • Yi Su 1,2,*, Sudhamayee Routhu 2, Kee S. Moon 3, Sung Q. Lee 4, WooSub Youm 4 and Yusuf Ozturk 2,
  • Only LFP from a utah array, but solid work none-the-less.
  • 20V unipolar stimulation.
    • Through separate recording and stimulation electrodes.
  • 35mm x 10mm.
  • LFP due to limited bandwidth.
    • Less RF bw & compression that the wireless system I designed 6 years ago.
    • Reason: "Further, in order to analyze the integrative synaptic processes, LFP is the signal of interest instead of spikes, because synaptic processes cannot be captured by spike activity of a small number of neurons"
captured by spike activity of a small number of neurons.
  • Reference use of DuraGen followed by silicone elastomer.
  • Didn't cite us.

{253}
hide / / print
ref: Mehring-2003.12 tags: BMI LFP MUA SUA Mehring Vaadia date: 07-24-2012 15:54 gmt revision:3 [2] [1] [0] [head]

PMID-14634657[0]Inference of hand movements from local field potentials in monkey motor cortex

  • idea: you get equally good predictions from SUA, LFP, or MUA in decoding a 8-target center-out task.
  • c.f. {1167}

____References____

{1167}
hide / / print
ref: -0 tags: SUA LFP BMI decoding Donoghue date: 07-24-2012 15:54 gmt revision:0 [head]

PMID-22157115 Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials.

  • Idea: you get more information from SUA (what they call SA) activity than broadband LFPS for predicting reach direction / position for a freely moving monkey.
  • C.F. {253}

{753}
hide / / print
ref: Kuhn-2004.04 tags: STN LFP syncronization movement motor planning parkinsons PD DBS beta date: 01-26-2012 17:28 gmt revision:7 [6] [5] [4] [3] [2] [1] [head]

PMID-14960502[0] Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance.

  • Asked 6 PD patients to play a game where they were warned to move / not to move.
  • Beta-frequency (20hz) power decreased prior to movement, with a time course correlated to reaction time.
    • This was followed by a late post-movement increase in beta power.
  • No-go trials showed a brief dip in beta power, with quick resumption.
  • conclude that:
    • the subthalamic nucleus is involved in the preparation of externally paced voluntary movements in humans
    • the degree of synchronization of subthalamic nucleus activity in the beta band may be an important determinant of whether motor programming and movement initiation is favored or suppressed. (hum, maybe).
  • found via Romulo's references; see the list of papers that cite it.

____References____

[0] Kühn AA, Williams D, Kupsch A, Limousin P, Hariz M, Schneider GH, Yarrow K, Brown P, Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance.Brain 127:Pt 4, 735-46 (2004 Apr)

{712}
hide / / print
ref: MAPlle-2009.03 tags: sleep spindles learning ripples LFP hippocampus neocortex synchrony SWS REM date: 03-25-2009 15:05 gmt revision:2 [1] [0] [head]

PMID-19245368[0] The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats

  • Here we examined whether slow oscillations also group learning-induced increases in spindle and ripple activity, thereby providing time-frames of facilitated hippocampus-to-neocortical information transfer underlying the conversion of temporary into long-term memories.
  • No apparent grouping effect between slow oscillations and learning-induced spindles and ripples in rats.
  • Stronger effect of learning on spindles (neocortex) and ripples (hippocampus) ; less or little effect of learning on slow waves in the neocortex.
  • have a good plot showing their time-series analysis:

____References____

[0] Mölle M, Eschenko O, Gais S, Sara SJ, Born J, The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.Eur J Neurosci 29:5, 1071-81 (2009 Mar)

{23}
hide / / print
ref: Vyssotski-2006.02 tags: neurologger neural_recording recording_technology EEG SUA LFP electrical engineering date: 02-05-2007 06:21 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-16236777[0] Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording.

Recording neuronal activity of animals moving through their natural habitat is difficult to achieve by means of conventional radiotelemetry. This illustration shows a new approach, exemplified by a homing pigeon carrying both a small GPS path recorder and a miniaturized action and field potential logger (“neurologger”), the entire assembly weighing maximally 35 g, a load carried easily by a pigeon over a distance of up to 50 km. Before release at a distant location, the devices are activated and store both positional and neuronal activity data during the entire flight. On return to the loft, all data are downloaded and can be analyzed using software for path analysis and electrical brain activity. Thus single unit activity or EEG patterns can be matched to the flight path superimposed on topographical maps. Such neurologgers may also be useful for a variety of studies using unrestrained laboratory animals in different environments or test apparatuses. The prototype on the hand-held pigeon records and stores EEG simultaneously from eight channels up to 47 h, or single unit activity from two channels during 9 h, but the number of channels can be increased without much gain in weight by sandwiching several of these devices. Further miniaturization can be expected. For details, see Vyssotski AL, Serkov AN, Itskov PM, Dell Omo G, Latanov AV, Wolfer DP, and Lipp H-P. Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. [1]

____References____