m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
{1238}
hide / / print
ref: -0 tags: histology immune response otto indiana electrodes gfap inflamation transparent clearing vimentin date: 04-19-2013 23:59 gmt revision:4 [3] [2] [1] [0] [head]

PMID-23428842 Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses.

  • Woolley AJ, Desai HA, Otto KJ.
  • One timepoint, 4 weeks.
  • Laser confocal microscopy
    • after tissue clearing (optical index of refraction matching) in a 60% sucrose solution.
  • Single-shank iridium contact silicon substrate MEA.
    • Device cut level with surface of brain after insertion.
  • Intact MEAs via device-capture histology, DHhist (Woolley et al 2011)
    • 350-450um tissue explanted with device.
    • They promote their technique.
  • Tissue surrounding microdevices exhibited two major depth-related phenomena:
    • a non-uniform microglial coating along the device length and
    • a dense mass of cells surrounding the implant in cerebral cortical layers I and II.
      • The dense mass of cells contained vimentin, a protein not typically expressed highly in CNS cells, evidence that non-CNS cells likely descended down the face of the penetrating devices from the pial surface.
        • But no Iba1 (activated microglia) per se in the tissue mass.
    • Hoe342 -- cell marker.
    • This mass was apparently consistent across animals!
    • Cells in the mass were VIM positive -- fibroblasts -- meninges?
  • low GFAP = not an astrocytic scar.
  • This study provides further evidence that a progressive invasion of non-CNS cells contributes substantially to the chronic phase of the tissue response around intracortical MEAs.
    • Again, might be from BBB distruption {1237}


This result is supported by previous papers:
  • {1193} -- microglia response not correlated to electrode failure, but correlated to ferritin immunoresponse
  • {781} -- also note that menigeal fibroblasts migrate down electrode tracts.
  • {1028} -- measured vimentin, GFAP, and ED1 (not Iba1). Found Vim+ and GFAP+, suggesting reactive astrocytes and not meningeal cells. ED1 aka CD68 is specific to macrophages and not microglia, so these may be blood-derived cells.
  • {1200} -- chronic contact with the meninges v.s intraparenchymal correlated with Vim+ encapsulation.
  • {1210} -- old paper showing the same result near surface of implant.
  • {1196} -- more against GFAP & pro BBB disruption
  • {1204} -- GFAP uncorrelated (!) with NeuN intensity
  • {307} -- all initial tests of utah arrays showed fibrous encapsulation; one array was completely explanted. This is why now they put gore-tex over the implant -- to prevent fibroblast migration (i guess).

{1200}
hide / / print
ref: Kim-2004.05 tags: histology electrode immune response Tresco hollow fiber membranes GFAP vimentin ED1 date: 01-28-2013 03:08 gmt revision:7 [6] [5] [4] [3] [2] [1] [head]

PMID-14741588[0] Chronic response of adult rat brain tissue to implants anchored to the skull.

  • The increase in tissue reactivity observed with transcranially implanted HFMs may be influenced by several mechanisms including chronic contact with the meninges and possibly motion of the device within brain tissue.
  • Broadly speaking, our results suggest that any biomaterial, biosensor or device that is anchored to the skull and in chronic contact with meningeal tissue will have a higher level of tissue reactivity than the same material completely implanted within brain tissue.
  • See also [1]
  • Could slice through the hollow fiber membrane for histology. (as we shall).
  • Good list of references.

____References____

[0] Kim YT, Hitchcock RW, Bridge MJ, Tresco PA, Chronic response of adult rat brain tissue to implants anchored to the skull.Biomaterials 25:12, 2229-37 (2004 May)
[1] Biran R, Martin DC, Tresco PA, The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull.J Biomed Mater Res A 82:1, 169-78 (2007 Jul)

{1196}
hide / / print
ref: Skousen-2011.01 tags: electrodes immune response Tresco Wise Michigan histology GFAP atrocyte surface area foreign body response date: 01-25-2013 01:44 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-21867802[0] Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays.

  • We studied the chronic brain foreign body response to planar solid silicon microelectrode arrays and planar lattice arrays with identical penetrating profiles but with reduced surface area in rats after an 8-week indwelling period.
  • Using quantitative immunohistochemistry, we found that presenting less surface area after equivalent iatrogenic injury is accompanied by significantly less
    • persistent macrophage activation,
    • decreased blood brain barrier leakiness,
    • and reduced neuronal cell loss.
  • Could be a factor of micromotion, too -- the lattice array has more anchoring points (?)
  • They propose it's a factor of TNF- α\alpha concentration around the implants. This, and other proinflammatory and cytoxic cytokines, is released by macrophages.
  • "Recent studies from our lab have described disruption of BBB integrity, indicated by the presence of autologous IgG in the brain parenchyma, surrounding both microwire and planar silicon recording devices ([1][2]. Under normal conditions, autologous IgG is excluded from the brain parenchyma (Azzi et al., 1990; Seitz et al., 1985) but has been observed following BBB disruption (Aihara et al., 1994).
    • E.g. the presence of IgG proves that the BBB was compromised.
      • Less so with the lattice implants.
  • Previous work from our lab using single microwires and single shaft, planar silicon microelectrode arrays indicated that the spatial distribution of GFAP does not increase with time over the indwelling period and did not support the “increase in astrogliosis over time hypothesis” as a dominant or general biologically related failure mechanism for this type of microelectrode recording device {1197}.

____References____

[0] Skousen JL, Merriam SM, Srivannavit O, Perlin G, Wise KD, Tresco PA, Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays.Prog Brain Res 194no Issue 167-80 (2011)
[1] Winslow BD, Christensen MB, Yang WK, Solzbacher F, Tresco PA, A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex.Biomaterials 31:35, 9163-72 (2010 Dec)
[2] Winslow BD, Tresco PA, Quantitative analysis of the tissue response to chronically implanted microwire electrodes in rat cortex.Biomaterials 31:7, 1558-67 (2010 Mar)

{1111}
hide / / print
ref: Stice-2007.06 tags: electrodes recording small rats S1 PGA histology GFAP date: 01-24-2013 21:07 gmt revision:9 [8] [7] [6] [5] [4] [3] [head]

PMID-17409479[0] Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex.

  • Implanted 12 um and 25 um polymide coated stainless steel
    • Wires coated with poly-glycolic acid (PGA) to facilitate implantation.
  • Only looked to 4 weeks.
  • 12 um implants significantly less GFAP (astrocyte) reactivity at 4 weeks, no difference at 2 weeks (figure 9 & 10).
    • B = bare, P = PGA coated.
  • Can use to bolster the idea that smaller implants are less irritating.

____References____

[0] Stice P, Gilletti A, Panitch A, Muthuswamy J, Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex.J Neural Eng 4:2, 42-53 (2007 Jun)

{1102}
hide / / print
ref: Gilletti-2006.09 tags: electrode micromotion histology GFAP variable reluctance date: 01-04-2013 02:28 gmt revision:2 [1] [0] [head]

PMID-16921202[0] Brain micromotion around implants in the rodent somatosensory cortex.

  • Used a differential variable reluctance transducer (DVRT) in adult rats (n = 6) to monitor micromotion normal to the somatosensory cortex surface
    • Reluctance e.g. AC inductance varied with a floating bobbin (or so -- they do not list the details of this COTS device).
  • Pulsatile surface micromotion was observed to be in the order of 10-30 um due to pressure changes during respiration and 2-4 um due to vascular pulsatility.
  • Large inward displacements of brain tissue between 10-60 um were observed in n = 3 animals immediately following the administration of anesthesia

____References____

[0] Gilletti A, Muthuswamy J, Brain micromotion around implants in the rodent somatosensory cortex.J Neural Eng 3:3, 189-95 (2006 Sep)