You are not authenticated, login.
text: sort by
tags: modified
type: chronology
hide / / print
ref: Harrison-2003.06 tags: CMOS amplifier headstage electrophysiology neural_recording low_power chopper Reid Harrison date: 01-16-2012 04:43 gmt revision:12 [11] [10] [9] [8] [7] [6] [head]

IEEE-1201998 (pdf) A low-power low-noise CMOS amplifier for neural recording applications

  • detail novel MOS-bipolar pseudoresistor element to permit amplification of low-frequency signals down to milihertz range.
  • 80 microwatt spike amplifier in 0.16mm^2 silicon with 1.5 um CMOS, 1 microwatt EEG amplifier
  • input-referred noise of 2.2uV RMS.
  • has a nice graph comparing the power vs. noise for a number of other published designs
  • i doubt the low-frequency amplification really matters for neural recording, though certainly it matters for EEG.
    • they give an equation for the noise efficiency factor (NEF), as well as much detailed background.
    • NEF better than any prev. reported. Theoretical limit is 2.9 for this topology; they measure 4.8
  • does not compare well to Medtronic amp: http://www.eetimes.com/news/design/showArticle.jhtml?articleID=197005915
    • 2 microwatt! @ 1.8V
    • chopper-stabilized
    • not sure what they are going to use it for - the battery will be killed it it has to telemeter anything!
    • need to find the report for this.
  • tutorial on chopper-stabilized amplifiers -- they have nearly constant noise v.s. frequency, and very low input/output offset.
  • References: {1056} Single unit recording capabilities of a 100 microelectrode array. Nordhausen CT, Maynard EM, Normann RA.
  • [5] see {1041}
  • [9] {1042}
  • [12] {1043}

Harrison, R.R. and Charles, C. A low-power low-noise CMOS amplifier for neural recording applications Solid-State Circuits, IEEE Journal of 38 6 958 - 965 (2003)