{875} revision 14 modified: 09-04-2014 18:10 gmt

One of the goals/needs of the lab is to be able to stimluate and record nervous tissue at the same time. We do not have immediate access to optogenetic methods, but what about lower frequency EM stimulation? The idea: if you put the stimulation frequency outside the recording system bandwidth, there is no need to switch, and indeed no reason you can't stimulate and record at the same time.

Hence, I very briefly checked for the effects of RF stimulation on nervous tissue.

  • PMID-16336478[0] Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes
    • Most clinical response to pulsed RF is heat ablation - the RF pulses can generate 'hot spots' c.f. continuous RF.
    • Secondary effect may be electroporation; this is not extensively investigation.
    • Suggests that 500kHz pulses can be 'rectified' by the membrane, and hence induce sodium influx, hence neuron activation.
    • They propose that some of the clinical effects of pulsed RF stimulation is mediated through LTD response.
  • {1297} -- original!
  • PMID-14206843[2] Electrical Stimulation of Excitable Tissue by Radio-Frequency Transmission
    • Actually not so interesting -- deals with RF powered pacemakers and bladder stimulators; both which include rectification.
  • Pulsed and Continous Radiofrequency Current Adjacent to the Cervical Dorsal Root Ganglion of the Rat Induces Late Cellular Activity in the Dorsal Horn
    • shows that neurons are activated by pulsed RF, albeit through c-Fos staining. Electrodes were much larger in this study.
    • Also see PMID-15618777[3] associated editorial which calls for more extensive clinical, controlled testing. The editorial gives some very interesting personal details - scientists from the former Soviet bloc!
  • PMID-16310722[4] Pulsed radiofrequency applied to dorsal root ganglia causes a selective increase in ATF3 in small neurons.
    • used 20ms pulses of 500kHz.
    • Small diameter fibers are differentially activated.
    • Pulsed RF induces activating transcription factor 3 (ATF3), which has been used as an indicator of cellular stress in a variety of tissues.
    • However, there were no particular signs of axonal damage; hence the clinically effective analgesia may be reflective of a decrease in cell activity, synaptic release (or general cell health?)
    • Implies that RF may be dangerous below levels that cause tissue heating.
  • Cellphone Radiation Increases Brain Activity
    • Implies that Rf energy - here presumably in 800-900Mhz or 1800-1900Mhz - is capable of exciting nervous tissue without electroporation.
  • Random idea: I wonder if it is possible to get a more active signal out of an electrode by stimulating with RF? (simultaneously?)
  • Human auditory perception of pulsed radiofrequency energy
    • Evicence seems to support the theory that it is local slight heating -- 6e-5 C -- that creates pressure waves which can be heard by humans, guinea pigs, etc.
    • Unlikely to be direct neural stimulation.
    • High frequency hearing is required for this
      • Perhaps because it is lower harmonics of thead resonance that are heard (??).

Conclusion: worth a shot, especially given the paper by Alberts et al 1972.

  • There should be a frequency that sodium channels react to, without inducing cellular stress.
  • Must be very careful to not heat the tissue - need a power controlled RF stimulator
    • The studies above seem to work with voltage-control (?!)

____References____

[0] Cosman ER Jr, Cosman ER Sr, Electric and thermal field effects in tissue around radiofrequency electrodes.Pain Med 6:6, 405-24 (2005 Nov-Dec)
[1] Alberts WW, Wright EW Jr, Feinstein B, Gleason CA, Sensory responses elicited by subcortical high frequency electrical stimulation in man.J Neurosurg 36:1, 80-2 (1972 Jan)
[2] GLENN WW, HAGEMAN JH, MAURO A, EISENBERG L, FLANIGAN S, HARVARD M, ELECTRICAL STIMULATION OF EXCITABLE TISSUE BY RADIO-FREQUENCY TRANSMISSION.Ann Surg 160no Issue 338-50 (1964 Sep)
[3] Richebé P, Rathmell JP, Brennan TJ, Immediate early genes after pulsed radiofrequency treatment: neurobiology in need of clinical trials.Anesthesiology 102:1, 1-3 (2005 Jan)
[4] Hamann W, Abou-Sherif S, Thompson S, Hall S, Pulsed radiofrequency applied to dorsal root ganglia causes a selective increase in ATF3 in small neurons.Eur J Pain 10:2, 171-6 (2006 Feb)