m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
[0] Graybiel AM, The basal ganglia: learning new tricks and loving it.Curr Opin Neurobiol 15:6, 638-44 (2005 Dec)

{67}
hide / / print
ref: Graybiel-2005.12 tags: graybiel motor_learning reinforcement_learning basal ganglia striatum thalamus cortex date: 10-03-2008 17:04 gmt revision:3 [2] [1] [0] [head]

PMID-16271465[] The basal ganglia: Learning new tricks and loving it

  • learning-related changes occur significantly earlier in the striatum than the cortex in a cue-reversal task. she says that this is because the basal ganglia instruct the cortex. I rather think that they select output dimensions from that variance-generator, the cortex.
  • dopamine agonist treatment improves learning with positive reinforcers but not learning with negative reinforcers.
  • there is a strong hyperkinetic pathway that projects directly to the subthalamic nucleus from the motor cortex. this controls output of the inhibitor pathway (GPi)
  • GABA input from the GPi to the thalamus can induce rebound spikes with precise timing. (the outputs are therefore not only inhibitory).
  • striatal neurons have up and down states. recommended action: simultaneous on-line recording of dopamine release and spike activity.
  • interesting generalization: cerebellum = supervised learning, striatum = reinforcement learning. yet yet! the cerebellum has a strong disynaptic projection to the putamen. of course, there is a continuous gradient between fully-supervised and fully-reinforcement models. the question is how to formulate both in a stable loop.
  • striosomal = striatum to the SNc
  • http://en.wikipedia.org/wiki/Substantia_nigra SNc is not an disorganized mass: the dopamergic neurons from the pars compacta project to the cortex in a topological map, dopaminergic neurons of the fringes (the lowest) go to the sensorimotor striatum and the highest to the associative striatum

____References____