m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
[0] Kettner RE, Schwartz AB, Georgopoulos AP, Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins.J Neurosci 8:8, 2938-47 (1988 Aug)[1] Georgopoulos AP, Kettner RE, Schwartz AB, Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population.J Neurosci 8:8, 2928-37 (1988 Aug)[2] Schwartz AB, Kettner RE, Georgopoulos AP, Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement.J Neurosci 8:8, 2913-27 (1988 Aug)[3] Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT, On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex.J Neurosci 2:11, 1527-37 (1982 Nov)

{296}
hide / / print
ref: Kettner-1988.08 tags: 3D motor control population_vector Schwartz Georgopoulos date: 04-05-2007 17:09 gmt revision:1 [0] [head]

A triptych of papers (good job increasing your publication count, guys!):

  • PMID-3411363[0] Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins.
    • propose multilinear model to predict firing rate of nneuron (a regression that is the same direction as the kalman filter)
    • i don't see how this is that much different from below (?)
  • PMID-3411362[1] Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population.
    • they show, basically, that they can predict movement direction (note this is different from actual movement!) using the poulation vector scheme.
  • PMID-3411361[2] Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement.
    • 568 cells!!
    • 8 directional targets, again -- not sure how they were aranged; they say 'in approximately equal angular intervals'
    • these findings generalize the previous 2D results [3] (tuning to external space) to 3D

____References____