[0] Li CS, Padoa-Schioppa C, Bizzi E, Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field.Neuron 30:2, 593-607 (2001 May)[1] Caminiti R, Johnson PB, Urbano A, Making arm movements within different parts of space: dynamic aspects in the primate motor cortex.J Neurosci 10:7, 2039-58 (1990 Jul)


{289} revision 5 modified: 09-24-2008 22:49 gmt

PMID-11395017[0] Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field

  • this is concerned with memory cells, cells that 'remember' or remain permanently changed after learning the force-field.
  • In the above figure, the blue lines (or rather vertices of the blue lines) indicate the firing rate during the movement period (and 200ms before); angular position indicates the target of the movement. The force-field in this case was a curl field where force was proportional to velocity.
  • Preferred direction of the motor cortical units changed when the preferred driection of the EMGs changed
  • evidence of encoding of an internal model in the changes in tuning properties of the cells.
    • this can suppor both online performance and motor learning.
    • but what mechanisms allow the motor cortex to change in this way???
  • also see [1]

____References____