You are not authenticated, login.
text: sort by
tags: modified
type: chronology
hide / / print
ref: Heimer-2006.01 tags: STN DBS synchrony basal ganglia reinforcement learning beta date: 02-22-2012 17:07 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-17017503[0] Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease.

  • They worry that increased synchrony may be an epi-phenomena of tremor or independent oscillations with similar frequency.
  • Modeling using actor/critic models of the BG.
  • Dopamine depletion, as in PD, resultis in correlated pallidal activity, and reduced information capacity.
  • Other studies have found that DBS desynchronizes activity -- [1] or [2].
  • Biochemical and metabolic studies show that GPe activity does not change in Parkinsonism.
  • Pallidal neurons in normal monkeys do not show correlated discharge (Raz et al 2000, Bar-Gad et al 2003a).
  • Reinforcement driven dimensionality reduction (RDDR) (Bar-Gad et al 2003b).
  • DA activity, through action on D1 and D2 receptors on the 2 different types of MSN, affects the temporal difference learning scheme in which DA represents the difference between expectation and reality.
    • These neurons have a static 5-10 Hz firing rate, which can be modulated up or down. (Morris et al 2004).
  • "The model suggests that the chronic dopamine depletion in the striatum of PD patients is perceived as encoding a continuous state where reality is worse than predictions." Interesting theory.
    • Alternately, abnormal DA replacement leads to random organization of the cortico-striatal network, eventually leading to dyskinesia.
  • Recent human studies have found oscillatory neuronal correlation only in tremulous patients and raised the hypothesis that increased neuronal synchronization in parkinsonism is an epi-phenomenon of the tremor of independent oscillators with the same frequency (Levy et al 2000).
    • Hum. might be.
  • In rhesus and green monkey PD models, a major fraction of the primate pallidal cells develop both oscillatory and non-oscillatory pair-wise correlation
  • Our theoretical analysis of coherence functions revealed that small changes between oscillation frequencies results in non-significant coherence in recording sessions longer than 10 minutes.
  • Their theory: current DBS methods overcome this probably by imposing a null spatio-temporal firing in the basal ganglia enabling the thalamo-cortical circuits to ignore and compensate for the problematic BG".


[0] Heimer G, Rivlin M, Israel Z, Bergman H, Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease.J Neural Transm Suppl no Volume :70, 17-20 (2006)
[1] Kühn AA, Williams D, Kupsch A, Limousin P, Hariz M, Schneider GH, Yarrow K, Brown P, Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance.Brain 127:Pt 4, 735-46 (2004 Apr)
[2] Goldberg JA, Boraud T, Maraton S, Haber SN, Vaadia E, Bergman H, Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease.J Neurosci 22:11, 4639-53 (2002 Jun 1)