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1 IntrodutionFiltering is the problem of estimating the state of a system as a set of observations beomesavailable on-line. This problem is of paramount importane in many �elds of siene,engineering and �nane. To solve it, one begins by modeling the evolution of the system andthe noise in the measurements. The resulting models typially exhibit omplex nonlinearitiesand non-Gaussian distributions, thus preluding analytial solution.The best known algorithm to solve the problem of non-Gaussian, nonlinear �ltering(�ltering for short) is the extended Kalman �lter (Anderson and Moore 1979)1. This �lteris based upon the priniple of linearizing the measurements and evolution models usingTaylor series expansions. The series approximations in the EKF algorithm an, however,lead to poor representations of the nonlinear funtions and probability distributions ofinterest. As as result, this �lter an diverge.Reently, Julier and Uhlmann (Julier and Uhlmann 1996, Julier and Uhlmann 1997b)have introdued a �lter founded on the intuition that it is easier to approximate a Gaussiandistribution than it is to approximate arbitrary nonlinear funtions. They named this �lterthe unsented Kalman �lter (UKF). They have shown that the UKF leads to more aurateresults than the EKF and that in partiular it generates muh better estimates of theovariane of the states (the EKF often seems to underestimate this quantity). Wan andvan der Merwe (Wan, van der Merwe and Nelson 2000, Wan and van der Merwe 2000)extended the use of the UKF to parameter estimation as well as dual estimation2. Theyreported a signi�ant improvement in performane over that whih is ahieved by using anEKF for the same problem. The UKF has, however, the limitation that it does not applyto general non-Gaussian distributions.Another popular solution strategy for the general �ltering problem is to use sequentialMonte Carlo methods, also known as partile �lters: see for example (Douet 1998, Douet,de Freitas and Gordon 2000, Gordon, Salmond and Smith 1993). These methods allow fora omplete representation of the posterior distribution of the states, so that any statistialestimates, suh as the mean, modes, kurtosis and variane, an be easily omputed. Theyan therefore, deal with any nonlinearities or distributions.1We should point out that there are many other �nite dimensional �lters for speialized ases, inludingthe HMM �lter for disrete state-spaes, �lters for ounting observations (Smith and Miller 1986), �lters fordynami models with a time-varying, unknown proess noise ovariane matrix (West and Harrison 1997)and �lters appliable to lasses of the exponential family state-spae models (Vidoni 1999). We, however,restrit the presentation to the most popular and general �lters for ontinuous state-spaes.2Dual estimation is the problem of simultaneously estimating the state of a system as well as the modelparameters that de�ne the dynamis of the system. 1



Partile �lters rely on importane sampling and, as a result, require the design of pro-posal distributions that an approximate the posterior distribution reasonably well. Ingeneral, it is hard to design suh proposals. The most ommon strategy is to sample fromthe probabilisti model of the states evolution (transition prior). This strategy an, how-ever, fail if the new measurements appear in the tail of the prior or if the likelihood istoo peaked in omparison to the prior. This situation does indeed arise in several areas ofengineering and �nane, where one an enounter sensors that are very aurate (peakedlikelihoods) or data that undergoes sudden hanges (non-stationarities): see for example(Pitt and Shephard 1999, Thrun 2000). To overome this problem, several tehniques basedon linearization have been proposed in the literature (de Freitas 1999, de Freitas, Niranjan,Gee and Douet 2000, Douet 1998, Pitt and Shephard 1999). For example, in (de Freitaset al. 2000), the EKF Gaussian approximation is used as the proposal distribution for apartile �lter. In this paper, we follow the same approah, but replae the EKF proposalby a UKF proposal. The resulting �lter should perform better not only beause the UKFis more aurate, but beause it also allows one to ontrol the rate at whih the tails ofthe proposal distribution go to zero. That is, the UKF an be used to generate proposaldistributions with larger high order moments and with means that are lose to the truemean of the target distribution.The last remark is the rux of our approah. We will show theoretially and empiriallythat partile �lters with a proposal distribution obtained using the UKF outperform otherexisting �lters. For omparison purposes, we will also present partile �lters that use theEKF to generate the proposal distribution.The remainder of this paper is organized as follows. Setion 2 introdues the notationand the general state-spae model formulation. Setion 3 introdues the EKF and UKF,while setions 4 and 5 are devoted to the theory and implementation details of partile�lters. After disussing the shortomings of standard partiles in Setion 6, we propose thenew unsented partile �lter. Setion 7 treats the onvergene aspets of this �lter. Someexperimental results are disussed in Setion 8. Finally, Setion 9 ontains some onludingremarks and pointers for future researh.
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2 Dynami State-Spae ModelThe general state-spae model (negleting ontrol inputs for the sake of larity) an bebroken down into a state transition and state measurement modelp(xtjxt�1) (1)p(ytjxt) (2)where xt 2 Rnx denotes the states (hidden variables or parameters) of the system at timet and yt 2 Rny the observations. The states follow a �rst order Markov proess andthe observations are assumed to be independent given the states. For example, if we areinterested in nonlinear, non-Gaussian regression, the model an be expressed as followsxt = f(xt�1;vt�1) (3)yt = h(ut;xt;nt) (4)where, in this ase, yt 2 Rny denotes the output observations, ut 2 Rnu the input obser-vations, xt 2 Rnx the state of the system, vt 2 Rnv the proess noise and nt 2 Rnn themeasurement noise. The mappings f : Rnx �Rnv 7! Rnx and h : Rnx �Rnn 7! Rny representthe deterministi proess and measurement models. To omplete the spei�ation of themodel, the prior distribution (at t = 0) is denoted by p(x0).The posterior density p(x0:tjy1:t), where x0:t = fx0;x1; : : : ;xtg and y1:t = fy1;y2; : : : ;ytg,onstitutes the omplete solution to the sequential estimation problem. In many applia-tions, suh as traking, it is of interest to estimate one of its marginals, namely the �lteringdensity p(xtjy1:t). By omputing the �ltering density reursively, we do not need to keeptrak of the omplete history of the states. Thus, from a storage point of view, the �lteringdensity is more parsimonious than the full posterior density funtion. If we know the �lter-ing density, we an easily derive various estimates of the system's states inluding means,modes, medians and on�dene intervals. This will be our goal.3 The EKF and Unsented Kalman FiltersIn this setion, we shall present the EKF and unsented �lters, whih provide Gaussian ap-proximations to p(xtjy1:t). These algorithms will be inorporated into the partile �lteringframework in Setion 6.3.1 The Extended Kalman FilterThe EKF is a minimum mean-square-error (MMSE) estimator based on the Taylor seriesexpansion of the nonlinear funtions f and h around the estimates �xtjt�1 of the states xt3



(Anderson and Moore 1979). For examplef(xt) = f(�xtjt�1) + �f(xt)�xt ��� (xt=�xtjt�1)(xt � �xtjt�1) + � � �Using only the linear expansion terms, it is easy to derive the following update equations forthe mean �x and ovariane P of the Gaussian approximation to the posterior distributionof the states �xtjt�1 = f(�xt�1; 0)Ptjt�1 = FtPt�1FTt +GtQtGTtKt = Ptjt�1HTt [UtRtUTt +HtPtjt�1HTt ℄�1�xt = �xtjt�1 +Kt �yt � h(�xtjt�1; 0)�Pt = Ptjt�1 �KtHtPtjt�1 (5)where Kt is known as the Kalman gain, Q is the variane of the proess noise (assumed tobe zero-mean Gaussian), R is the variane of the measurement noise (also assumed to bezero-mean Gaussian), Ft , �f(xt)�xt ��� (xt=�xtjt�1) and Gt , �f(vt)�vt ��� (vt=�v) are the Jaobians ofthe proess model and Ht , �h(xt)�xt ��� (xt=�xtjt�1) and Ut , �h(nt)�nt ��� (nt=�n) are the Jaobians ofthe measurements model,3.2 The Unsented Kalman FilterThe unsented Kalman �lter (UKF) is a reursive MMSE estimator that addresses someof the approximation issues of the EKF (Julier and Uhlmann 1997b). Beause the EKFonly uses the �rst order terms of the Taylor series expansion of the nonlinear funtions,it often introdues large errors in the estimated statistis of the posterior distributions ofthe states. This is espeially evident when the models are highly nonlinear and the loallinearity assumption breaks down, i.e., the e�ets of the higher order terms of the Taylorseries expansion beomes signi�ant. Unlike the EKF, the UKF does not approximate thenon-linear proess and observation models, it uses the true nonlinear models and rather ap-proximates the distribution of the state random variable. In the UKF the state distributionis still represented by a Gaussian random variable (GRV), but it is spei�ed using a minimalset of deterministially hosen sample points. These sample points ompletely apture thetrue mean and ovariane of the GRV, and when propagated through the true nonlinearsystem, aptures the posterior mean and ovariane aurately to the 2nd order for anynonlinearity, with errors only introdued in the 3rd and higher orders. To elaborate on this,we start by �rst explaining the unsented transformation. After this the saled unsentedtransformation (SUT) is introdued and disussed. The saled unsented transformation is4



a generalizing extension of the unsented transformation and forms the algorithmi ore ofthe unsented Kalman �lter.3.2.1 The unsented transformationThe unsented transformation (UT) is a method for alulating the statistis of a randomvariable whih undergoes a nonlinear transformation and builds on the priniple that it iseasier to approximate a probability distribution than an arbitrary nonlinear funtion (Julierand Uhlmann 1996). Consider propagating a nx dimensional random variable x through anarbitrary nonlinear funtion g : Rnx 7! Rny to generate y,y = g(x) (6)Assume x has mean �x and ovariane Px. To alulate the statistis (�rst two moments)of y using the UT, we proeed as follows: First, a set of 2nx+1 weighted samples or sigmapoints Si = fWi;X ig are deterministially hosen so that they ompletely apture the truemean and ovariane of the prior random variable x. A seletion sheme that satis�es thisrequirement isX 0 = �x W0 = �=(nx + �) i = 0X i = �x+ �p(nx + �)Px�i Wi = 1=f2(nx + �)g i = 1; : : : ; nxX i = �x� �p(nx + �)Px�i Wi = 1=f2(nx + �)g i = nx + 1; : : : ; 2nx (7)where � is a saling parameter and �p(nx + �)Px�i is the ith row or olumn of the ma-trix square root of (nx + �)Px. Wi is the weight assoiated with the ith point suh thatP2nxi=0 Wi = 1. Eah sigma point is now propagated through the nonlinear funtionY i = g(X i) i = 0; : : : ; 2nx (8)and the estimated mean and ovariane of y are omputed as follows�y = 2nxXi=0 WiY i (9)Py = 2nxXi=0 Wi (Y i � �y) (Y i � �y)T : (10)These estimates of the mean and ovariane are aurate to the seond order (third order forGaussian priors) of the Taylor series expansion of g(x) for any nonlinear funtion. Errorsare introdued in the third and higher order moments but are saled by the hoie of theparameter �. In omparison, the EKF only alulates the posterior mean and ovarianeaurately to the �rst order with all higher order moments trunated. For a detailed proof5
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UT covarianceFigure 1: Shemati diagram of the Unsented Transformation: A loud of 5000 samplesdrawn from a Gaussian prior is propagated through an arbitrary highly nonlinear funtionand the true posterior sample mean and ovariane are alulated. This reets the truthas alulated by a Monte Carlo approah and is shown in the left plot. Next, the posteriorrandom variable's statistis are alulated by a linearization approah as used in the EKF.The middle plot shows these results. The errors in both the mean and ovariane as alu-lated by this \�rst-order" approximation is learly visible. The right plot shows the resultsof the estimates alulated by the unsented transformation. There is almost no bias errorin the estimate of the mean and the estimated ovariane is also muh loser to the trueovariane. The superior performane of the UT is learly evident.of this, see (Julier and Uhlmann 1996). A omparison of the performane of the UT versusthat of the linearization approah used in the EKF is shown in Figure 1.The sigma point seletion sheme used in the UT has the property that as the dimension ofthe state-spae inreases, the radius of the sphere that bounds all the sigma points inreasesas well. Even though the mean and ovariane of the prior distribution are still apturedorretly, it does so at the ost of sampling non-loal e�ets. If the nonlinearities in questionare very severe, this an lead to signi�ant diÆulties. In order to address this problem, thesigma points an be saled towards or away from the mean of the prior distribution by a6



proper hoie of �. The distane of the ith sigma point from �x, jX i � �xj, is proportional top(nx + �). When � = 0, the distane is proportional to pnx. When � > 0 the points aresaled further from �x and when � < 0 the points are saled towards �x. For the speial aseof � = 3� nx, the desired dimensional saling invariane is ahieved by aneling the e�etof nx. However, when � = 3 � nx < 0 the weight W0 < 0 and the alulated ovarianean be non-positive semide�nite. The saled unsented transformation was developed toaddress this problem (Julier 2000).3.2.2 The saled unsented transformationThe saled unsented transformation (SUT) replaes the original set of sigma points witha transformed set given byX 0i = X 0 + �(X i �X 0) i = 0 : : : 2nx; (11)where � is a positive saling parameter whih an be made arbitrarily small to minimizehigher order e�ets. This formulation gives an extra degree of freedom to ontrol thesaling of the sigma points without ausing the resulting ovariane to possibly beomenon-positive semide�nite. This is ahieved by applying the UT to an auxiliary randomvariable propagation problem whih is related to the original nonlinear model of equation(6) by z = g0(x) = g [�x+ �(x� �x)℄� g(�x)�2 + g(�x): (12)The Taylor series expansion of �z and Pz agrees with that of �y and Py exatly up to theseond order, with the higher order terms saling geometrially with a ommon ratio of�. The same seond order auray of the normal UT is thus retained with a ontrollablesaling of the higher order errors by a proper hoie of �. The auxiliary random variableformulation of the SUT is idential to applying the original UT on a pre-saled set of sigmapoints (Julier 2000). A set of sigma points S = fW;X g is alulated using equation (7)and then transformed into the saled set S 0 = fW0 ;X 0g byX 0i = X 0 + �(X i �X 0)W 0i = 8<: W0=�2 + (1� 1=�2) i = 0Wi=�2 i 6= 0 (13)where � is the new sigma point saling parameter. The sigma point seletion and salingan also be ombined into a single step (thereby reduing the number of alulations) bysetting � = �2(nx + �)� nx (14)7



and seleting the sigma point set by:X 0 = �xX i = �x+ �p(nx + �)Px�i i = 1; : : : ; nxX i = �x� �p(nx + �)Px�i i = nx + 1; : : : ; 2nxW (m)0 = �=(nx + �)W ()0 = �=(nx + �) + (1� �2 + �)W (m)i =W ()i = 1=f2(nx + �)g i = 1; : : : ; 2nx (15)The weighting on the zeroth sigma point diretly a�ets the magnitude of the errors inthe fourth and higher order terms for symmetri prior distributions (Julier 2000). A thirdparameter, �, is thus introdued whih a�ets the weighting of the zeroth sigma point forthe alulation of the ovariane. This allows for the minimization of higher order errors ifprior knowledge (i.e. kurtosis, et.) of the distribution of x is available.The omplete saled unsented transformation is thus given by the following:1. Choose the parameters �, � and �. Choose � � 0 to guarantee positive semi-de�niteness of the ovariane matrix. The spei� value of kappa is not ritial though,so a good default hoie is � = 0. Choose 0 � � � 1 and � � 0. � ontrols the \size" ofthe sigma point distribution and should ideally be a small number to avoid samplingnon-loal e�ets when the nonlinearities are strong. � is a non-negative weightingterm whih an be used to inorporate knowledge of the higher order moments of thedistribution. For a Gaussian prior the optimal hoie is � = 2. This parameter analso be used to ontrol the error in the kurtosis whih a�ets the 'heaviness' of thetails of the posterior distribution.2. Calulate the set of 2nx + 1 saled sigma points and weights S = fW;X g by setting� = �2(nx + �) � nx and using the ombined seletion/saling sheme of equation(15). As mentioned earlier, nx is the dimension of x.3. Propagate eah sigma point through the nonlinear transformationY i = g (X i) i = 0; : : : ; 2nx4. The mean �y and ovariane Py are omputed as follows�y = 2nxXi=0 W (m)i Y iPy = 2nxXi=0 W ()i fY i � �yg fYi � �ygT8



3.2.3 Implementing the Unsented Kalman FilterThe Unsented Kalman Filter (UKF) is a straightforward appliation of the saled unsentedtransformation to reursive minimum mean-square-error (RMMSE) estimation (Julier andUhlmann 1997b), where the state random variable (RV) is rede�ned as the onatenationof the original state and noise variables: xat = [xTt vTt nTt ℄T . The SUT sigma point seletionsheme is applied to this new augmented state RV to alulate the orresponding sigmamatrix, X at . The omplete UKF algorithm that updates the mean �x and ovariane P ofthe Gaussian approximation to the posterior distribution of the states is given by:1. Initialize with: �x0 = E[x0℄P0 = E[(x0 � �x0)(x0 � �x0)T ℄�xa0 = E[xa℄ = [�xT0 0 0℄T
Pa0 = E[(xa0 � �xa0)(xa0 � �xa0)T ℄ = 2664 P0 0 00 Q 00 0 R 37752. For t 2 f1; : : : ;1g,(a) Calulate sigma points:X at�1 = h�xat�1 �xat�1 �q(na + �)Pat�1i(b) Time update:X xtjt�1 = f �X xt�1;X vt�1��xtjt�1 = 2naXi=0 W (m)i X xi;tjt�1Ptjt�1 = 2naXi=0 W ()i [X xi;tjt�1 � �xtjt�1℄[X xi;tjt�1 � �xtjt�1℄TY tjt�1 = h�X xtjt�1;X nt�1��ytjt�1 = 2naXi=0 W (m)i Yi;tjt�19



() Measurement update equations:P~yt~yt = 2naXi=0 W ()i [Yi;tjt�1 � �ytjt�1℄[Yi;tjt�1 � �ytjt�1℄TPxtyt = 2naXi=0 W ()i [Xi;tjt�1 � �xtjt�1℄[Yi;tjt�1 � �ytjt�1℄TKt = PxtytP�1~yt~yt�xt = �xtjt�1 +Kt(yt � �ytjt�1)Pt = Ptjt�1 �KtP~yt~ytKTtwhere, xa = [xT vT nT ℄T , X a = [(X x)T (X v)T (X n)T ℄T , �=omposite saling pa-rameter, na = nx + nv + nn, Q=proess noise ov., R= measurement noise ov.,K=Kalman gain,Wi=weights as alulated in Eqn. 15.Note that no expliit alulation of Jaobians or Hessians are neessary to implementthis algorithm. The UKF requires omputation of a matrix square root whih an beimplemented diretly using a Cholesky fatorization in order n3x=6. However, the ovarianematries an be expressed reursively, and thus the square-root an be omputed in ordern2x by performing a reursive update to the Cholesky fatorization. So, not only does theUKF outperform the EKF in auray and robustness, it does so at no extra omputationalost. The superior performane of the UKF over that of the EKF have been reported innumerous publiations inluding (Wan et al. 2000, Wan and van der Merwe 2000, Chongand Kleeman 1997, Julier and Uhlmann 1997b, Julier and Uhlmann 1997a, Clark 1999).This is the most general form of the unsented Kalman �lter. For the speial (but oftenfound) ase where the proess and measurement noise are purely additive, the omputationalomplexity of the UKF an be redued. In suh a ase, the system state need not beaugmented with the noise RV's. This redues the dimension of the sigma points as wellas the total number of sigma points used. The ovarianes of the noise soures are theninorporated into the state ovariane using a simple additive proedure. For more details,see (Julier and Uhlmann 1997b).4 Partile FilteringWe have so far presented two nonlinear �ltering strategies that rely on Gaussian approxi-mation. In this setion, we shall present a �ltering method (partile �ltering) that does notrequire this assumption. However, it has other problems as we will point out in Setion 6.In that setion, we will show that it is possible to overome some of the problems inherent10



to partile �lters by ombining them with the EKF and UKF strategies in a theoretiallyvalid setting.In reent years, many researhers in the statistial and signal proessing ommunitieshave, almost simultaneously, proposed several variations of partile �ltering algorithms. Inreent years, many researhers in the statistial and signal proessing ommunities have, al-most simultaneously, proposed several variations of partile �ltering algorithms. As pointedout in (Liu, Chen and Logvinenko 2000), basi sequential Monte Carlo methods, based onsequential importane sampling, had already been introdued in the physis and statis-tis literature in the �fties! (Hammersley and Morton 1954, Rosenbluth and Rosenbluth1955). These methods were also introdued in the automati ontrol �eld in the late sixties(Douet 1998, Handshin and Mayne 1969). In the seventies, various researhers ontinuedworking on these ideas (Akashi and Kumamoto 1977, Handshin 1970, Zaritskii, Svetnikand Shimelevih 1975). However, all these earlier implementations were based on plainsequential importane sampling, whih, as we shall see later, degenerates with time. Themajor ontribution towards allowing this lass of algorithm to be of any pratial use wasthe inlusion of a resampling stage in the early nineties (Gordon et al. 1993). Sine thenmany new improvements have been proposed (Douet et al. 2000).Before presenting partile �ltering algorithms, we need to review perfet Monte Carlosimulation and importane sampling. This will allow us to present partile �lters in a verygeneral setting.4.1 Perfet Monte Carlo SimulationIn Monte Carlo simulation, a set of weighted partiles (samples), drawn from the posteriordistribution, is used to map integrals to disrete sums. More preisely, the posterior an beapproximated by the following empirial estimatebp(x0:tjy1:t) = 1N NXi=1 Æx(i)0:t(dx0:t)where the random samples fx(i)0:t; i = 1; : : : ; Ng, are drawn from the posterior distributionand Æ(d�) denotes the Dira delta funtion. Consequently, any expetations of the formE�gt(x0:t)� = Z gt(x0:t)p(x0:tjy1:t)dx0:tmay be approximated by the following estimateE�gt(x0:t)� = 1N NXi=1 gt(x(i)0:t)11



where the partiles x(i)0:t are assumed to be independent and identially distributed (i.i.d.) forthe approximation to hold. Aording to the law of large numbers, we have E�gt(x0:t)� a:s:����!N!1E�gt(x0:t)�, where a:s:����!N!1 denotes almost surely onvergene. Moreover, if the posteriorvariane of gt(x0:t) is bounded, that is varp(�jy1:t)�gt(x0:t)� <1, then the following entrallimit theorem holdspN�E�gt(x0:t)�� E�gt(x0:t)�� =)N!1 N�0; varp(�jy1:t)�gt(x0:t)��where =)N!1 denotes onvergene in distribution.4.2 Bayesian Importane SamplingAs mentioned in the previous setion, one an approximate the posterior distribution witha funtion on a �nite disrete support. Consequently, it follows from the strong law of largenumbers that as the number or samples N inreases, expetations an be mapped intosums. Unfortunately, it is often impossible to sample diretly from the posterior densityfuntion. However, we an irumvent this diÆulty by sampling from a known, easy-to-sample, proposal distribution q(x0:tjy1:t) and making use of the following substitutionE�gt(x0:t)� = Z gt(x0:t)p(x0:tjy1:t)q(x0:tjy1:t)q(x0:tjy1:t)dx0:t= Z gt(x0:t)p(y1:tjx0:t)p(x0:t)p(y1:t)q(x0:tjy1:t)q(x0:tjy1:t)dx0:t= Z gt(x0:t)wt(x0:t)p(y1:t) q(x0:tjy1:t)dx0:twhere the variables wt(x0:t) are known as the unnormalized importane weightswt = p(y1:tjx0:t)p(x0:t)q(x0:tjy1:t) (16)We an get rid of the unknown normalizing density p(y1:t) as followsE�gt(x0:t)� = 1p(y1:t) Z gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:t= R gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:tR p(y1:tjx0:t)p(x0:t) q(x0:tjy1:t)q(x0:tjy1:t)dx0:t= R gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:tR wt(x0:t)q(x0:tjy1:t)dx0:t= E q(�jy1:t )�wt(x0:t)gt(x0:t)�E q(�jy1:t )�wt(x0:t)�where the notation E q(�jy1:t ) has been used to emphasize that the expetations are taken overthe proposal distribution q(�jy1:t). Hene, by drawing samples from the proposal funtion12



q(�jy1:t), we an approximate the expetations of interest by the following estimateE�gt(x0:t)� = 1=NPNi=1 gt(x(i)0:t)wt(x(i)0:t)1=NPNi=1 wt(x(i)0:t)= NXi=1 gt(x(i)0:t) ewt(x(i)0:t) (17)where the normalized importane weights ew(i)t are given byew(i)t = w(i)tPNj=1w(j)tThe estimate of equation (17) is biased as it involves a ratio of estimates. However, it ispossible to obtain asymptoti onvergene and a entral limit theorem for E�gt(x0:t)� underthe following assumptions (Douet 1998, Geweke 1989):1. x(i)0:t orresponds to a set of i.i.d. samples drawn from the proposal distribution, thesupport of the proposal distribution inludes the support of the posterior distributionand E�gt(x0:t)� exists and is �nite.2. The expetations of wt and wtg2t (x0:t) over the posterior distribution exist and are�nite.A suÆient ondition to verify the seond assumption is to have bounds on the variane ofgt(x0:t) and on the importane weights (Geweke 1989, Crisan and Douet 2000). Thus, asN tends to in�nity, the posterior density funtion an be approximated arbitrarily well bythe point-mass estimate bp(x0:tjy1:t) = NXi=1 ew(i)t Æx(i)0:t(dx0:t)4.3 Sequential Importane SamplingIn order to ompute a sequential estimate of the posterior distribution at time t withoutmodifying the previously simulated states x0:t�1, proposal distributions of the followingform an be used, q(x0:tjy1:t) = q(x0:t�1jy1:t�1)q(xtjx0:t�1;y1:t) ; (18)Here we are making the assumption that the urrent state is not dependent on futureobservations, i.e., we're doing �ltering and not smoothing. It needs to be emphasized thatmore general proposals, whih modify previously simulated trajetories, might be neessaryin some senarios (Pitt and Shephard 1999). This issue is, however, beyond the sope of13



this paper. Under our assumptions that the states orrespond to a Markov proess andthat the observations are onditionally independent given the states, we getp(x0:t) = p(x0) tYj=1 p(xjjxj�1) and p(y1:tjx0:t) = tYj=1 p(yj jxj) (19)By substituting equations (18) and (19) into equation (16), a reursive estimate for theimportane weights an be derived as followswt = p(y1:tjx0:t)p(x0:t)q(x0:t�1jy1:t�1)q(xtjx0:t�1;y1:t)= wt�1 p(y1:tjx0:t)p(x0:t)p(y1:t�1jx0:t�1)p(x0:t�1) 1q(xtjx0:t�1;y1:t)= wt�1 p(ytjxt)p(xtjxt�1)q(xtjx0:t�1;y1:t) (20)Equation (20) provides a mehanism to sequentially update the importane weights,given an appropriate hoie of proposal distribution, q(xtjx0:t�1;y1:t). The exat form ofthis distribution is a ritial design issue and is usually approximated in order to failitateeasy sampling. The details of this is disussed in the next setion. Sine we an samplefrom the proposal distribution and evaluate the likelihood and transition probabilities, allwe need to do is generate a prior set of samples and iteratively ompute the importaneweights. This proedure, known as sequential importane sampling (SIS), allows us toobtain the type of estimates desribed by equation (17).4.3.1 Choie of proposal distributionThe hoie of proposal funtion is one of the most ritial design issues in importanesampling algorithms and forms the main issue addressed in this paper. The preferene forproposal funtions that minimize the variane of the importane weights is advoated by(Douet 1997). The following result has been proved:Proposition 1 [Proposition 3 of (Douet, Gordon and Krishnamurthy 1999)℄ The proposaldistribution q(xtjx0:t�1;y1:t) = p(xtjx0:t�1;y1:t) minimizes the variane of the importaneweights onditional on x0:t�1 and y1:t.This hoie of proposal distribution has also been advoated by other researhers (Kong,Liu and Wong 1994, Liu and Chen 1995, Zaritskii et al. 1975). Nonetheless, the distributionq(xtjx0:t�1;y1:t) $ p(xtjxt�1) (21)(the transition prior) is the most popular hoie 3 of proposal funtion (Avitzour 1995, Bea-dle and Djuri� 1997, Gordon et al. 1993, Isard and Blake 1996, Kitagawa 1996). Although3A $ B implies that we hoose B to approximate A.14



it results in higher Monte Carlo variation than the optimal proposal p(xtjx0:t�1;y1:t), as aresult of it not inorporating the most reent observations, it is usually easier to implement(Berzuini, Best, Gilks and Larizza 1997, Douet 1998, Liu and Chen 1998). The transitionprior is de�ned in terms of the probabilisti model governing the states' evolution (3) andthe proess noise statistis. For example, if an additive Gaussian proess noise model isused, the transition prior is simply,p(xtjxt�1) = N (f (xt�1; 0) ; Qt�1) : (22)As illustrated in Figure 2, if we fail to use the latest available information to proposenew values for the states, only a few partiles will have signi�ant importane weightswhen their likelihood are evaluated. It is therefore of paramount importane to move thepartiles towards the regions of high likelihood. This problem also arises when the likelihoodfuntion is too narrow ompared to the prior. In Setions 6 and 7, we shall desribe severalalgorithms, based on linearization and the unsented transformation, to implement theoptimal importane funtion.4.3.2 Degeneray of the SIS algorithmThe SIS algorithm disussed so far has a serious limitation: the variane of the importaneweights inreases stohastially over time. In order to show this we begin by expandingEquation (16),
.

LikelihoodPrior

Figure 2: The optimal importane distribution allows us to move the samples in the priorto regions of high likelihood. This is of paramount importane if the likelihood happensto lie in one of the tails of the prior distribution, or if it is too narrow (low measurementerror).
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wt = p(y1:tjx0:t)p(x0:t)q(x0:tjy1:t)= p(y1:t;x0:t)q(x0:tjy1:t)= p(x0:tjy1:t)p(y1:t)q(x0:tjy1:t)/ p(x0:tjy1:t)q(x0:tjy1:t) (23)The ratio in the last line4 of Equation (23) is alled the importane ratio and it an beshown that its variane inreases over time. For a proof of this, see (Kong et al. 1994) and(Douet et al. 1999). We thus state (without proof):Proposition 2 [Page 285 of (Kong et al. 1994), proposition 4 of (Douet et al. 1999)℄The unonditional variane (that is, when the observations are regarded as random) of theimportane ratios inreases over time.To understand why the variane inrease poses a problem, suppose that we want tosample from the posterior. In that ase, we want the proposal density to be very lose5 tothe posterior density. When this happens, we obtain the following results for the mean andvariane (see (Douet 1997) for a proof)E q(�jy1:t )�p(x0:tjy1:t)q(x0:tjy1:t)� = 1and varq(�jy1:t)�p(x0:tjy1:t)q(x0:tjy1:t)� = E q(�jy1:t )��p(x0:tjy1:t)q(x0:tjy1:t) � 1�2� = 0In other words, we want the variane to be lose to zero in order to obtain reasonableestimates. Therefore, a variane inrease has a harmful e�et on the auray of the sim-ulations. In pratie, the degeneray aused by the variane inrease an be observed bymonitoring the importane weights. Typially, what we observe is that, after a few iter-ations, one of the normalized importane weights tends to 1, while the remaining weightstend to zero. A large number of samples are thus e�etively removed from the sampleset beause their importane weights beome numerially insigni�ant. The next setionpresents a strategy to redue this degeneration or depletion of samples.4The proportionality in the last line of the equation follows from the fat that p(y1:t) is a onstant.5Closeness is de�ned over the full support of the true posterior. This implies that the best possible (butnot pratial) hoie for the proposal is q(x0:tjy1:t) = p(x0:tjy1:t)16



4.4 SeletionTo avoid the degeneray of the SIS simulation method, a seletion (resampling) stage maybe used to eliminate samples with low importane weights and multiply samples with highimportane weights. It is possible to see an analogy to the steps in geneti algorithms(Higuhi 1997).A seletion sheme assoiates to eah partile x(i)0:t a number of \hildren", say Ni 2 N,suh that PNi=1Ni = N . Several seletion shemes have been proposed in the literature.These shemes satisfy E�Ni� = N ew(i)t but their performane varies in terms of the varianeof the partiles var�Ni�. Results in (Kitagawa 1996) and (Crisan, Del Moral and Lyons1999) indiate that the restrition E�Ni� = N ew(i)t is unneessary to obtain onvergeneresults. So it is possible to design biased but omputationally inexpensive seletion shemes.We will now present a number of seletion or resampling shemes, namely: sampling-importane resampling (SIR), residual resampling and minimum variane sampling. Wefound that the spei� hoie of resampling sheme does not signi�antly a�et the per-formane of the partile �lter, so we used residual resampling in all of the experiments inSetion 9.4.4.1 Sampling-importane resampling (SIR) and multinomial samplingMany of the ideas on resampling have stemmed from the work of Efron (Efron 1982),Rubin (Rubin 1988) and Smith and Gelfand (Smith and Gelfand 1992). Resampling in-volves mapping the Dira random measure fx(i)0:t; ew(i)t g into an equally weighted random
sampling
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Figure 3: Resampling proess, whereby a random measure fx(i)1:t; ew(i)t g is mapped into anequally weighted random measure fx(j)1:t ; N�1g. The index i is drawn from a uniform distri-bution. 17



measure fx(j)0:t ; N�1g. This an be aomplished by sampling uniformly from the disreteset fx(i)0:t; i = 1; : : : ; Ng with probabilities f ew(i)t ; i = 1; : : : ; Ng as proposed in the seminalpaper of Gordon, Salmond and Smith (1993). A mathematial proof of this an be foundon pages 111{112 of (Gordon 1994). Figure 3 shows a way of sampling from this disreteset. After onstruting the umulative distribution of the disrete set, a uniformly drawnsampling index i is projeted onto the distribution range and then onto the distributiondomain. The intersetion with the domain onstitutes the new sample index j. That is,the vetor x(j)0:t is aepted as the new sample. Clearly, the vetors with the larger samplingweights will end up with more opies after the resampling proess.Sampling N times from the umulative disrete distribution PNi=1 ew(i)t Æx(i)0:t(dx0:t) isequivalent to drawing (Ni; i = 1; : : : ; N) from a multinomial distribution with parametersN and ew(i)t . This proedure an be implemented in O (N) operations (Douet 1998, Pittand Shephard 1999) following the work of (Ripley 1987, pp. 96). As we are sampling froma multinomial distribution, the variane is var(Ni) = N ew(i)t �1 � ew(i)t �. As pointed out in(Carpenter, Cli�ord and Fearnhead 1999) and (Liu and Chen 1998), it is possible to designseletion shemes with lower variane.4.4.2 Residual resamplingThis proedure involves the following steps (Higuhi 1997, Liu and Chen 1998). Firstly,set eNi = jN ew(i)t k. Seondly, perform an SIR proedure to selet the remaining N t =N �PNi=1 eNi samples with new weights w0(i)t = N�1t � ew(i)t N � eNi�. Finally, add the resultsto the urrent eNi. For this sheme, the variane �var(Ni) = N tw0(i)t �1 � w0(i)t �� is smallerthan the one given by the SIR sheme. Moreover, this proedure is omputationally heaper.4.4.3 Minimum variane samplingThis strategy inludes the strati�ed/systemati sampling proedures introdued in (Kita-gawa 1996) and the Tree Based Branhing Algorithm presented in (Crisan 2000). Onesamples a set of N points U in the interval [0; 1℄, eah of the points a distane N�1 apart.The number of hildren Ni is taken to be the number of points that lie between Pi�1j=1 ew(j)tand Pij=1 ew(j)t . This strategy introdues a variane on Ni even smaller than the residualresampling sheme, namely var(Ni) = N tw0(i)t �1�N tw0(i)t �. Its omputational omplexityis O (N).
18



5 The Partile Filter AlgorithmWe have so far explained how to ompute the importane weights sequentially and how toimprove the sample set by resampling. The pseudo-ode of a generi partile �lter an nowbe presented.
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Generi Partile Filter1. Initialization: t = 0� For i = 1; : : : ; N; draw the states x(i)0 from the prior p(x0).2. For t = 1; 2; : : :(a) Importane sampling step� For i = 1; : : : ; N , sample bx(i)t � q(xtjx(i)0:t�1;y1:t) and set bx(i)0:t , �x(i)0:t�1; bx(i)t �� For i = 1; : : : ; N , evaluate the importane weights up to a normalizing onstant:w(i)t = w(i)t�1 p(ytjbx(i)t )p(bx(i)t jx(i)t�1)q(bx(i)t jx(i)0:t�1;y1:t) (24)� For i = 1; : : : ; N , normalize the importane weights:ew(i)t = w(i)t � NXj=1w(j)t ��1(b) Seletion step (resampling)� Multiply/Suppress samples bx(i)0:t with high/low importane weights ew(i)t , respe-tively, to obtain N random samples x(i)0:t approximately distributed aording top(x(i)0:tjy1:t).� For i = 1; : : : ; N , set w(i)t = ew(i)t = 1N() Output: The output of the algorithm is a set of samples that an be used to approxi-mate the posterior distribution as followsp (x0:tjy1:t) � bp (x0:tjy1:t) = 1N NXi=1 Æ(x(i)0:t) (dx0:t)One obtains straightforwardly the following estimate of E (gt (x0:t))E (gt (x0:t)) = Z gt (x0:t) p (x0:tjy1:t) dx0:t � 1N NXi=1 gt �x(i)0:t�for some funtion of interest gt : (Rnx )(t+1) ! Rngt integrable with respet top (x0:tjy1:t). Examples of appropriate funtions inlude the marginal onditional meanof x0:t, in whih ase gt (x0:t) = xt, or the marginal onditional ovariane of x0:twith gt (x0:t) = xtx0t� Ep( xtjy1:t) [xt℄ E 0p( xtjy1:t) [xt℄. The marginal onditional meanis often the quantity of interest, beause it is the optimal MMSE estimate of theurrent state of the system.
20
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~Figure 4: In this example, a standard partile �lter starts at time t� 1 with an unweightedmeasure fex(i)t�1; N�1g, whih provides an approximation of p(xt�1jy1:t�2). For eah partilewe ompute the importane weights using the information at time t � 1. This results inthe weighted measure fex(i)t�1; ew(i)t�1g, whih yields an approximation p(xt�1jy1:t�1). Subse-quently, the resampling step selets only the \�ttest" partiles to obtain the unweightedmeasure fex(i)t�1; N�1g, whih is still an approximation of p(xt�1jy1:t�1) . Finally, the sam-pling (predition) step introdues variety, resulting in the measure fex(i)t ; N�1g, whih is anapproximation of p(xtjy1:t�1).A graphial representation of the algorithm is shown in Figure 4. The generi PFalgorithm is rather straightforward to implement, but to make it robust, we need to onsidersome improvements disussed in the following setion.6 Improving Partile FiltersThe suess of the PF algorithm depends on the validity of the following underlying as-sumptions:Monte Carlo (MC) assumption : The Dira point-mass approximation provides an ad-equate representation of the posterior distribution.21



Importane sampling (IS) assumption : It is possible to obtain samples from the pos-terior by sampling from a suitable proposal distribution and applying importanesampling orretions.If any of these onditions are not met, the PF algorithm an perform poorly. The dis-reteness of the approximation poses a resolution problem. In the resampling stage, anypartiular sample with a high importane weight will be dupliated many times. As a result,the loud of samples may eventually ollapse to a single sample. This degeneray will limitthe ability of the algorithm to searh for lower minima in other regions of the error surfae.In other words, the number of samples used to desribe the posterior density funtion willbeome too small and inadequate. A brute fore strategy to overome this problem is toinrease the number of partiles. A more re�ned strategy is to implement a Markov hainMonte Carlo (MCMC) step after the seletion step as disussed in the following subsetion.6.1 MCMC Move StepAfter the seletion sheme at time t, we obtain N partiles distributed marginally approx-imately aording to p(x0:tjy1:t). Sine the seletion step favors the reation of multipleopies of the \�ttest" partiles, it enables us to trak time varying �ltering distributions.However, many partiles might end up having no hildren (Ni = 0), whereas others mightend up having a large number of hildren, the extreme ase being Ni = N for a partiularvalue i. In this ase, there is a severe depletion of samples. We, therefore, require a pro-edure to introdue sample variety after the seletion step without a�eting the validity ofthe approximation.A strategy for solving this problem involves introduing MCMC steps of invariant dis-tribution p(x0:tjy1:t) on eah partile (Andrieu, de Freitas and Douet 1999b, Carpenteret al. 1999, Douet and Gordon 1999, Gilks and Berzuini 1998, MaEahern, Clyde andLiu 1999). The basi idea is that if the partiles are distributed aording to the posteriorp(ex0:tjy1:t), then applying a Markov hain transition kernel K(x0:tjex0:t), with invariant dis-tribution p(x0:tjy1:t) suh that R K(x0:tjex0:t)p(ex0:tjy1:t) = p(x0:tjy1:t), still results in a set ofpartiles distributed aording to the posterior of interest. However, the new partiles mighthave been moved to more interesting areas of the state-spae. In fat, by applying a Markovtransition kernel, the total variation of the urrent distribution with respet to the invariantdistribution an only derease. Note that we an inorporate any of the standard MCMCmethods, suh as the Gibbs sampler and Metropolis Hastings algorithms, into the �lteringframework, but we no longer require the kernel to be ergodi. The MCMC move step analso be interpreted as sampling from the �nite mixture distribution N�1PNi=1K(x0:tjex(i)0:t).22



Convergene results for this type of algorithm are presented in (Gilks and Berzuini 1998).One an generalize this idea by introduing MCMC steps on the produt spae withinvariant distribution NQi=1 p(x(i)0:tjy1:t), that is to apply MCMC steps on the entire populationof partiles. It should be noted that independent MCMC steps spread out the partiles in apartiular mode more evenly, but do not explore modes devoid of partiles, unless \lever"proposal distributions are available. By adopting MCMC steps on the whole population, wean draw upon many of the ideas developed in parallel MCMC omputation. In this work,however, we limit ourselves to the simpler ase of using independent MCMC transitionssteps on eah partile. In the ase of standard partile �lters, we propose to sample fromthe transition prior and aept aording to a Metropolis-Hastings (MH) step as follows.Smoothing MH step� Sample v � U[0;1℄.� Sample the proposal andidate x?(i)t � p(xtjx(i)t�1)� If v � min�1; p(ytjx?(i)t )p(ytjex(i)t ) �{ then aept move: x(i)0:t = �ex(i)0:t�1;x?(i)t �{ else rejet move: x(i)0:t = ex(i)0:tEnd If.It is possible, however, to use more omplex proposals suh as mixtures of Metropolis-Hastings steps to ensure an eÆient exploration of the sample spae (de Freitas 1999). Itis even possible to implement reversible jump MCMC steps (Green 1995) so as to allowthe partiles to move from one subspae to other subspaes of, possibly, di�erent dimension(Andrieu, de Freitas and Douet 1999a). Later, we shall desribe MCMC steps that use theEKF and unsented �lters to generate the proposal distributions.6.2 Designing Better Importane ProposalsThe importane sampling approximation depends on how lose the proposal distribution isto the posterior distribution. As illustrated in Figure 2, if the likelihood is too peaked or ifthere is little overlap between the prior and the likelihood, one needs to move the samples23



to regions of high likelihood. Various approahes have been proposed to solve this problem.We present some of them.6.2.1 Prior editing, rejetion methods and auxiliary partile �ltersPrior editing (Gordon et al. 1993) is an ad-ho aeptane test for proposing partiles inregions of high likelihood. After the predition step, the residual error et = yt � ht(bx(i)t ) isomputed. If jetj > Klpr, where r is the sale of the measurement error model and Kl is aonstant hosen to indiate the region of non-negligible likelihood, then the sample bx(i)t isrejeted. The proedure is repeated until a spei�ed number of partiles is aepted. Theproblem with this approah is that it is too heuristi and an be omputationally intensiveunless the rejetion rate is small. In addition, it introdues a bias on the distribution of thepartiles.Rejetion methods: If the likelihood is bounded, say p(ytjxt) < Mt, it is possibleto sample from the optimal importane distribution p(xtjxt�1;yt) using an aept/rejetproedure. Firstly, we obtain a sample from the prior bx � p(xtjxt�1) and a uniform vari-able u � U[0;1℄. Subsequently, the sample from the prior is aepted if u � p(ytjbxt)=Mt.Otherwise, we rejet the proposed sample and repeat the proess until N samples are a-epted. Unfortunately, the rejetion sampler requires a random number of iterations at eahtime step. This proves to be omputationally expensive in high-dimensional spaes (Douet1998, M�uller 1991, Pitt and Shephard 1999).The auxiliary partile �lter (Pitt and Shephard 1999) allows us to obtain approximatesamples from the optimal importane distribution by introduing an auxiliary variable k.Spei�ally, the aim of the algorithm is to draw samples from the joint distributionq(xt; kjx0:t�1;y1:t) / p(ytj�(k)t )p(xtjx(k)t�1)p(x(k)1:t�1jy1:t�1)where �(k)t ; k = 1; : : : ; N is the mean, mode, draw, or some other value assoiated withthe transition prior. One way to aomplish this objetive is to evaluate the marginalauxiliary variable weights g(kjx0:t�1;y1:t) / p(ytj�(k)t )p(x(k)1:t�1jy1:t�1) and use them to seletM partiles from the transition prior. Typially, one boosts the sample set so that M > N .The partile �lter then proeeds to evaluate the orretion weightswt = p(ytjx(j)t )p(ytj�(kj)t )where j = 1; : : : ;M and kj denotes the k-th \parent" of partile j. Finally, the orretionweights are used to perform a seond seletion step to obtain N partiles approximatelydistributed aording to the posterior distribution.24



In omparison to the SIR �lter, the auxiliary partile �lter an generate better estimatesof the posterior whenever the likelihood is situated in one of the priors tails. On theother hand, if the likelihood and prior oinide, the SIR �lter an produe more aurateestimates. The latter behavior is a onsequene of the extra variane introdued by theadditional seletion step.One alternative way of viewing the auxiliary partile �lter is to interpret the distribu-tion q(xt; kjx0:t�1;y1:t) as the importane proposal. In doing so, the following importaneweights are obtained wt / p(x(k)0:t jy1:t)p(ytj�(k)t )p(xtjx(k)t�1)p(x(k)1:t�1jy1:t�1)/ p(ytjx(k)t )p(xtjx(k)t�1)p(x(k)1:t�1jy1:t�1)p(ytj�(k)t )p(xtjx(k)t�1)p(x(k)1:t�1jy1:t�1)= p(ytjx(k)t )p(ytj�(k)t )The three methods presented above for designing better proposal distributions havenumerous ineÆienies as disussed in the literature. For this reason we didn't inludethem in the �lter set used for the experiments in Setion 9. We presented them here forompleteness though and refer the reader to the literature for more detail and experimentalresults.6.2.2 Loal linearizationThis is a popular method for devising proposal distributions that approximate the optimalimportane distribution, by inorporating the most urrent observation with the optimalGaussian approximation of the state: see (Douet 1998, Pitt and Shephard 1999) for exam-ple. It relies on the �rst order Taylor series expansions of the likelihood and transition prioras desribed in Setion 3.1, as well as a Gaussian assumption on all the random variablesin question. In this framework, the EKF approximates the optimal MMSE estimator of thesystem state by alulating the onditional mean of the state, given all of the observations.This is done in reursive framework, by propagating the Gaussian approximation of theposterior distribution through time, ombining it at eah time step with the new observa-tion. In other words, the EKF alulates the following reursive approximation to the trueposterior �ltering density, p(xtjy1:t) � pN (xtjy1:t) = N ��xt; bPt� (25)Within the partile �lter framework, a separate EKF is used to generate and propagate25



a Gaussian proposal distribution for eah partile, i.e.,q(x(i)t jx(i)0:t�1;y1:t) $ N ��x(i)t ; bP(i)t � i = 1; : : : ; N: (26)That is, at time t�1 one uses the EKF equations, with the new data, to ompute the meanand ovariane of the importane distribution for eah partile. Next, we sample the i-thpartile from this distribution. The method requires that we propagate the ovariane bP (i)and speify the EKF proess and measurement noise ovarianes. This new �lter is alledthe extended Kalman partile �lter.Sine the EKF is an MMSE estimator, this loal linearization method leads to an im-proved annealed sampling algorithm, whereby the variane of eah proposal distributionhanges with time. Ideally, we start searhing over a large region of the error surfae andas time progresses, we onentrate on the regions of lower error.Although the EKF moves the prior towards the likelihood, thus possibly reating abetter proposal distribution, this is done at the ost of making a Gaussian assumption onthe form of the posterior as well as introduing inauraies due to linearization. Whenwe ompare the form of Equation (25) to the Gaussian transition prior of Equation (22),we see that EKF generated proposal distribution does indeed inlude the e�et of the mosturrent observation at time t. In general though (even with additive Gaussian proessand measurement noise models), the true form of this density will not be Gaussian. Thisan easily be shown using a Bayes rule expansion of the proposal distribution. Beauseof this, we have to experimentally determine if we are gaining more than we lose in �lterperformane. The results of this is shown in Setion 9. The unsented partile �lter wasdeveloped to address some of the short-omings of the extended Kalman partile �lter andis presented in Setion 7.The pseudo-ode for the extended Kalman partile �lter follows.
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Extended Kalman partile �lter1. Initialization: t = 0� For i = 1; : : : ; N; draw the states (partiles) x(i)0 from the prior p(x0).2. For t = 1; 2; : : :(a) Importane sampling step� For i = 1; : : : ; N :{ Compute the Jaobians F(i)t & G(i)t and H(i)t & U(i)t of the proess andmeasurement models.{ Update the partiles with the EKF:�x(i)tjt�1 = f(x(i)t�1)P(i)tjt�1 = F(i)t P(i)t�1FT (i)t +G(i)t QtGT (i)tKt = P(i)tjt�1HT (i)t [U(i)t RtUT (i)t +H(i)t P(i)tjt�1HT (i)t ℄�1�x(i)t = �x(i)tjt�1 +Kt(yt � h(�x(i)tjt�1))bP(i)t = P(i)tjt�1 �KtH(i)t P(i)tjt�1{ Sample bx(i)t � q(x(i)t jx(i)0:t�1;y1:t) = N ��x(i)t ; bP(i)t �{ Set bx(i)0:t , �x(i)0:t�1; bx(i)t � and bP(i)0:t , �P(i)0:t�1; bP(i)t �� For i = 1; : : : ; N , evaluate the importane weights up to a normalizing onstant:w(i)t / p(ytjbx(i)t )p(bx(i)t jx(i)t�1)q(bx(i)t jx(i)0:t�1;y1:t)� For i = 1; : : : ; N , normalize the importane weights.(b) Seletion step� Multiply/Suppress partiles (bx(i)0:t; bP(i)0:t) with high/low importane weights ew(i)t ,respetively, to obtain N random partiles (ex(i)0:t; eP(i)0:t).() MCMC step (optional)� Apply a Markov transition kernel with invariant distribution given by p(x(i)0:tjy1:t)to obtain (x(i)0:t;P(i)0:t).(d) Output: The output is generated in the same manner as for the generi partile �lter.
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The optional MCMC step onsists of the MH algorithm with uses the EKF to generatea proposal distribution, as follows. EKF MH step� Sample v from a uniform distribution: v � U[0;1℄.� Compute the Jaobians F?(i)t & G?(i)t and H?(i)t & U?(i)t of the proess and measurementmodels.� Update the states (partiles) with the EKF:�x?(i)tjt�1 = f(ex(i)t�1)P?(i)tjt�1 = F?(i)t ePt�1F?T (i)t +G?(i)t QtG?T (i)tKt = P?(i)tjt�1H?T (i)t [U?(i)t RtU?T (i)t +H?(i)t P?(i)tjt�1H?T (i)t ℄�1�x?(i)t = �x?(i)tjt�1 +Kt(yt � h(�x?(i)tjt�1))P?(i)t = P?(i)tjt�1 �KtH?(i)t P?(i)tjt�1 (27)� Sample the andidate x?(i)t � q(xtjex(i)0:t�1;y1:t) = N ��x?(i)t ;P?(i)t �� If v � min�1; p(ytjx?(i)t )p(x?(i)t jex(i)t�1)q(extjex(i)0:t�1;y1:t)p(ytjex(i)t )p(ex(i)t jex(i)t�1)q(x?(i)t jex(i)0:t�1;y1:t)�{ then aept move: x(i)0:t = �ex(i)0:t�1;x?(i)t �P(i)0:t = �eP(i)0:t�1;P?(i)t �{ else rejet move: x(i)0:t = ex(i)0:tP(i)0:t = eP(i)0:tEnd If.In the following setion, we introdue one tehnique that should in general perform betterthan rejetion methods or extended Kalman �lter expansions.7 The Usented Partile FilterAs shown in Setion 3, the unsented Kalman �lter (UKF) is able to more auratelypropagate the mean and ovariane of the Gaussian approximation to the state distribution,than the EKF. In omparison to the EKF, the UKF tends to generate more aurate28



estimates of the true ovariane of the state. Distributions generated by the UKF generallyhave a bigger support overlap with the true posterior distribution than the overlap ahievedby the EKF estimates. This is in part related to the fat that the UKF alulates theposterior ovariane aurately to the 3rd order, whereas the EKF relies on a �rst orderbiased approximation. This makes the UKF a better andidate for more aurate proposaldistribution6 generation within the partile �lter framework. The UKF also has the abilityto sale the approximation errors in the higher order moments of the posterior distribution,eg. kurtosis, et., allowing for heavier tailed distributions. Beause the sigma point setused in the UKF is deterministially designed to apture ertain harateristi of the priordistribution, one an expliitly optimize the algorithm to work with distributions that haveheavier tails than Gaussian distributions, i.e. Cauhy or Student-t distributions. Thisharateristi makes the UKF very attrative for the generation of proposal distributions.The new �lter that results from using a UKF for proposal distribution generation withina partile �lter framework is alled the Unsented Partile Filter (UPF), and is the majornew ontribution of this paper.The pseudo-ode of the UPF followsUnsented Partile Filter1. Initialization: t = 0� For i = 1; : : : ; N; draw the states (partiles) x(i)0 from the prior p(x0) and set,�x(i)0 = E[x(i)0 ℄P(i)0 = E[(x(i)0 � �x(i)0 )(x(i)0 � �x(i)0 )T ℄�x(i)a0 = E[x(i)a℄ = [(�x(i)0 )T 0 0℄TP(i)a0 = E[(x(i)a0 � �x(i)a0 )(x(i)a0 � �x(i)a0 )T ℄ = 2664 P(i)0 0 00 Q 00 0 R 3775Continued .... 6Like the EKF, the UKF also inorporates the latest observations, but this is done in a more aurateway.
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2. For t = 1; 2; : : :(a) Importane sampling step� For i = 1; : : : ; N :{ Update the partiles with the UKF:� Calulate sigma points:X (i)at�1 = ��x(i)at�1 �x(i)at�1 �q(na + �)P(i)at�1�� Propagate partile into future (time update):X (i)xtjt�1 = f �X (i)xt�1 ;X (i)vt�1� �x(i)tjt�1 = 2naXj=0W (m)j X (i)xj;tjt�1P(i)tjt�1 = 2naXj=0W ()j [X (i)xj;tjt�1 � �x(i)tjt�1℄[X (i)xj;tjt�1 � �x(i)tjt�1℄TY(i)tjt�1 = h�X (i)xtjt�1;X (i)nt�1� �y(i)tjt�1 = 2naXj=0W (m)j Y(i)j;tjt�1� Inorporate new observation (measurement update):P~yt~yt = 2naXj=0W ()j [Y(i)j;tjt�1 � �y(i)tjt�1℄[Y(i)j;tjt�1 � �y(i)tjt�1℄TPxtyt = 2naXj=0W ()j [X (i)j;tjt�1 � �x(i)tjt�1℄[Y(i)j;tjt�1 � �y(i)tjt�1℄TKt = PxtytP�1~yt~yt �x(i)t = �x(i)tjt�1 +Kt(yt � �y(i)tjt�1)bP(i)t = P(i)tjt�1 �KtP~yt~ytKTt{ Sample bx(i)t � q(x(i)t jx(i)0:t�1; ;y1:t) = N ��x(i)t ; bP(i)t �{ Set bx(i)0:t , �x(i)0:t�1; bx(i)t � and bP(i)0:t�P(i)0:t�1; bP(i)t �� For i = 1; : : : ; N , evaluate the importane weights up to a normalizing onstant.w(i)t / p(ytjbx(i)t )p(bx(i)t jx(i)t�1)q(bx(i)t jx(i)0:t�1;y1:t)� For i = 1; : : : ; N , normalize the importane weights.(b) Seletion step� Multiply/Suppress partiles (bx(i)0:t; bP(i)0:t) with high/low importane weights ew(i)t ,respetively, to obtain N random partiles (ex(i)0:t; eP(i)0:t).() MCMC step (optional)� Apply a Markov transition kernel with invariant distribution p(x(i)0:tjy1:t) to obtain(x(i)0:t;P(i)0:t).(d) Output: The output is generated in the same manner as for the generi partile �lter.30



8 Theoretial ConvergeneLet B (Rn) be the spae of bounded, Borel measurable funtions on Rn . We denote kfk ,supx2Rn jf (x)j. The following theorem is a straightforward onsequene of Theorem 1 in (Crisanand Douet 2000), whih is an extension of previous results in (Crisan et al. 1999).Theorem 1 If the importane weightwt / p (ytjxt) p (xtjxt�1)q (xtjx0:t�1;y1:t) (28)is upper bounded for any (xt�1;yt) and if one uses one of the seletion shemes desribedpreviously, then, for all t � 0, there exists t independent of N suh that for any ft 2B �Rnx�(t+1)� E 24 1N NXi=1 ft �x(i)0:t�� Z ft (x0:t) p (dx0:tjy1:t)!235 � t kftk2N : (29)The expetation in equation (29) is with respet to the randomness introdued by thepartile �ltering algorithm. This onvergene result shows that, under very loose assump-tions, onvergene of the (unsented) partile �lter is ensured and that the onvergenerate of the method is independent of the dimension of the state-spae. The only ruialassumption is to ensure that wt is upper bounded, that is that the proposal distributionq (xtjx0:t�1;y1:t) has heavier tails than p (ytjxt) p (xtjxt�1). Considering this theoretialresult, it should not be surprising that the UKF, whih provides a better approximationto the higher moments of the �ltering distribution than the EKF, yields better proposaldistributions than the EKF within the partile �ltering framework. In the following setion,we present a few experiments that on�rm this onjeture.9 ExperimentsWe ompared the performane of the Unsented Partile Filter to that of the other nonlin-ear �lters on two estimation problems. The �rst problem is a syntheti, salar estimationproblem and the seond is a real world problem onerning the priing of �nanial instru-ments.9.1 Syntheti ExperimentFor this experiment, a time-series was generated by the following proess modelxt+1 = 1 + sin(!�t) + �1xt + vt (30)31



where vt is a Gamma Ga(3; 2) random variable modeling the proess noise, and ! = 4e� 2and �1 = 0:5 are salar parameters. A non-stationary observation model,yt = 8<: �2x2t + nt t � 30�3xt � 2 + nt t > 30 (31)is used, with �2 = 0:2 and �3 = 0:5. The observation noise, nt, is drawn from a Gaussiandistribution N (0; 0:00001). Given only the noisy observations, yt, the di�erent �lters wereused to estimate the underlying lean state sequene xt for t = 1 : : : 60. The experimentwas repeated 100 times with random re-initialization for eah run. All of the partile �ltersused 200 partiles and residual resampling (see Setion 4.4 for details on resampling). TheSUT parameters were set to � = 1, � = 0 and � = 2. These parameters are optimal forthe salar ase. Table 1 summarizes the performane of the di�erent �lters. The tableshows the means and varianes of the mean-square-error (MSE) of the state estimates.Figure 5 ompares the estimates generated from a single run of the di�erent partile �lters.The superior performane of the unsented partile �lter (UPF) is learly evident. Figure6 shows the estimates of the state ovariane generated by a stand-alone EKF and UKFfor this problem. Notie how the EKF's estimates are onsistently smaller than thosegenerated by the UKF. This property makes the UKF better suited than the EKF forproposal distribution generation within the partile �lter framework.Algorithm MSEmean varExtended Kalman Filter (EKF) 0.374 0.015Unsented Kalman Filter (UKF) 0.280 0.012Partile Filter : generi 0.424 0.053Partile Filter : MCMC move step 0.417 0.055Partile Filter : EKF proposal 0.310 0.016Partile Filter : EKF proposal and MCMC move step 0.307 0.015Partile Filter : UKF proposal (\Unsented Partile Filter") 0.070 0.006Partile Filter : UKF proposal and MCMC move step 0.074 0.008Table 1: State estimation experiment results. This plot shows the mean and variane ofthe MSE alulated over 100 independent runs.
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(Hull 1997). An option is a partiular type of derivative that gives the holder the rightto do something. For example, a all option allows the holder to buy a ash produt, ata spei�ed date in the future, for a prie determined in advane. The prie at whih theoption is exerised is known as the strike prie, while the date at whih the option lapses isoften referred to as the maturity time. Put options, on the other hand, allow the holder tosell the underlying ash produt.The Blak Sholes partial di�erential equation is, essentially, the main industry standardfor priing options (Hull 1997). It relates the urrent value of an option (f) to the urrentvalue of the underlying ash produt (S), the volatility of the ash produt (�) and therisk-free interest rate (r) as follows�f�t + rS �f�S + 12�2S2 �2f�S2 = rfThis basi equation is only valid under several onditions, namely no risk-less arbitrage op-portunities, an instantaneous risk-less portfolio, ontinuous trading, no dividends, onstantvolatility and risk-free interest rate. In addition, the ash produt is assumed to be ditatedby the following geometri Brownian motion modeldSS = �dt+ ��dtwhere � is the expeted return and � orresponds to a random sample from a standardizednormal distribution (with mean zero and unit variane). In their seminal work (Blak andSholes 1973), Blak and Sholes derived the following solutions for priing European alland put options C = SN(d1)�Xe�rtmN(d2) (32)P = �SN(�d1) +Xe�rtmN(�d2) (33)where C denotes the prie of a all option, P the prie of a put option, X the strike prie,tm the time to maturity, N(:) is the umulative normal distribution, and d1 and d2 aregiven by d1 = ln(S=X) + (r + �2=2)tm�ptmd2 = d1 � �ptmThe volatility is usually estimated from a small moving window of data over the mostreent 50 to 180 days (Hull 1997). The risk-free interest rate is often estimated by monitoringinterest rates in the bond markets. In our approah, whih follows from (Niranjan 1996),we use the state-spae representation to model the system given by equations (32) and (33).34



We treat r and � as the hidden states and C and P as the output observations. tm and Sare treated as known ontrol signals (input observations). We believe that this approah isbetter sine it onstitutes a more natural way of dealing with the sequential behavior andnon-stationarity of the data. In the end, we are able to ompute daily omplete probabilitydistributions for r and � and to deide whether the urrent value of an option in the marketis being either over-pried or under-pried.Typially, options on a partiular equity and with the same exerise date are tradedwith several strike pries. For example, in our experiments, we used �ve pairs of all andput option ontrats on the British FTSE100 index (from February 1994 to Deember 1994)to evaluate the priing algorithms. For eah option on this set one an estimate a di�erentvolatility. By plotting the Blak-Sholes estimates of the volatilities against their respetivestrike pries, we obtain a urve whih is known as the volatility smile (Hull 1997). A wellknown priing strategy is to leave one of the options out and then determine the volatilitysmile given by the other options. If the option that was left out is below the urve, it ouldmean that it is under-pried by the market.
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Figure 7 shows an example of this phenomenon obtained by traking 5 pairs of all andput option ontrats on the FTSE-100 index (1994) with a partile �lter. On the 50thday, option 4 seems to be over-pried. The state of this option 10 days later on�rms thishypothesis. However, depending on the state of the partiular equity, some options mightremain under-pried or over-pried during their entire life-time. For example, if an optionon a ompany produt seems to be over-pried aording to its volatility smile, but investorsknow that the ompany is being bought by a larger ompany with better management, theoption prie will remain higher than the smile predition (Haugen 1990).In the sequential Monte Carlo framework, we an improve this trading strategy. Insteadof plotting a volatility smile, we plot a probability smile. That is, we an plot the probabilitydensity funtion of eah implied volatility against their respetive strike pries, as shown inFigure 8. This plot, learly, onveys more information than a simple plot of the posteriormean estimates.
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the same improvement over standard partile �ltering. This is beause in this partiularinstane the proess model is linear Gaussian and the nonlinearity of the measurementmodel is not too severe. This, however, will not be the ase in general. The importantthing is to notie that the UKF, used as a mehanism to generate the proposal distribution,works well with a diÆult real data set.10 ConlusionsIn this paper, we proposed a new partile �lter that uses the UKF to generate the proposaldistribution. When the proess and measurement models are either highly nonlinear orontain heavy tailed noise, the UKF produes proposal distributions that exhibit a largersupport overlap with the true posterior than the EKF proposal distributions, making it bet-ter suited for proposal distribution generation. Sine the UKF an also theoretially haveheavier tails than the EKF, while still inorporating the latest information before the evalu-ation of the importane weights, the theory predits that this �lter an perform very well insituations where the likelihood is peaked or when one �nds outliers in the data. A synthetiexperiment and an experiment with real �nanial data showed that the unsented partile�lter an perform better than other sequential estimation algorithms. We hope in the futureto extend the range of appliations of the unsented partile �lter. Towards this purpose,we have made the software freely available at http://www.s.berkeley.edu/~jfgf andhttp://varsha.ee.ogi.edu/~rvdmerwe.AknowledgementsWe would like to thank Mahesan Niranjan for providing the options data and for manyinteresting disussions on this problem.ReferenesAkashi, H. and Kumamoto, H. (1977). Random sampling approah to state estimation inswithing environments, Automatia 13: 429{434.Anderson, B. D. and Moore, J. B. (1979). Optimal Filtering, Prentie-Hall, New Jersey.Andrieu, C., de Freitas, J. F. G. and Douet, A. (1999a). Sequential Bayesian estimation andmodel seletion applied to neural networks, Tehnial Report CUED/F-INFENG/TR341, Cambridge University Engineering Department.40
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