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tIn this paper we propose a novel method for nonlinear, non-Gaussian, on-line es-timation. The algorithm 
onsists of a parti
le �lter that uses an uns
ented Kalman�lter (UKF) to generate the importan
e proposal distribution. The UKF allows theparti
le �lter to in
orporate the latest observations into a prior updating routine. Inaddition, the UKF generates proposal distributions that mat
h the true posterior more
losely and also has the 
apability of generating heavier tailed distributions than thewell known extended Kalman �lter. As a result, the 
onvergen
e results predi
t thatthe new �lter should outperform standard parti
le �lters, extended Kalman �lters anduns
ented Kalman �lters. A few experiments 
on�rm this predi
tion.



1 Introdu
tionFiltering is the problem of estimating the state of a system as a set of observations be
omesavailable on-line. This problem is of paramount importan
e in many �elds of s
ien
e,engineering and �nan
e. To solve it, one begins by modeling the evolution of the system andthe noise in the measurements. The resulting models typi
ally exhibit 
omplex nonlinearitiesand non-Gaussian distributions, thus pre
luding analyti
al solution.The best known algorithm to solve the problem of non-Gaussian, nonlinear �ltering(�ltering for short) is the extended Kalman �lter (Anderson and Moore 1979)1. This �lteris based upon the prin
iple of linearizing the measurements and evolution models usingTaylor series expansions. The series approximations in the EKF algorithm 
an, however,lead to poor representations of the nonlinear fun
tions and probability distributions ofinterest. As as result, this �lter 
an diverge.Re
ently, Julier and Uhlmann (Julier and Uhlmann 1996, Julier and Uhlmann 1997b)have introdu
ed a �lter founded on the intuition that it is easier to approximate a Gaussiandistribution than it is to approximate arbitrary nonlinear fun
tions. They named this �lterthe uns
ented Kalman �lter (UKF). They have shown that the UKF leads to more a

urateresults than the EKF and that in parti
ular it generates mu
h better estimates of the
ovarian
e of the states (the EKF often seems to underestimate this quantity). Wan andvan der Merwe (Wan, van der Merwe and Nelson 2000, Wan and van der Merwe 2000)extended the use of the UKF to parameter estimation as well as dual estimation2. Theyreported a signi�
ant improvement in performan
e over that whi
h is a
hieved by using anEKF for the same problem. The UKF has, however, the limitation that it does not applyto general non-Gaussian distributions.Another popular solution strategy for the general �ltering problem is to use sequentialMonte Carlo methods, also known as parti
le �lters: see for example (Dou
et 1998, Dou
et,de Freitas and Gordon 2000, Gordon, Salmond and Smith 1993). These methods allow fora 
omplete representation of the posterior distribution of the states, so that any statisti
alestimates, su
h as the mean, modes, kurtosis and varian
e, 
an be easily 
omputed. They
an therefore, deal with any nonlinearities or distributions.1We should point out that there are many other �nite dimensional �lters for spe
ialized 
ases, in
ludingthe HMM �lter for dis
rete state-spa
es, �lters for 
ounting observations (Smith and Miller 1986), �lters fordynami
 models with a time-varying, unknown pro
ess noise 
ovarian
e matrix (West and Harrison 1997)and �lters appli
able to 
lasses of the exponential family state-spa
e models (Vidoni 1999). We, however,restri
t the presentation to the most popular and general �lters for 
ontinuous state-spa
es.2Dual estimation is the problem of simultaneously estimating the state of a system as well as the modelparameters that de�ne the dynami
s of the system. 1



Parti
le �lters rely on importan
e sampling and, as a result, require the design of pro-posal distributions that 
an approximate the posterior distribution reasonably well. Ingeneral, it is hard to design su
h proposals. The most 
ommon strategy is to sample fromthe probabilisti
 model of the states evolution (transition prior). This strategy 
an, how-ever, fail if the new measurements appear in the tail of the prior or if the likelihood istoo peaked in 
omparison to the prior. This situation does indeed arise in several areas ofengineering and �nan
e, where one 
an en
ounter sensors that are very a

urate (peakedlikelihoods) or data that undergoes sudden 
hanges (non-stationarities): see for example(Pitt and Shephard 1999, Thrun 2000). To over
ome this problem, several te
hniques basedon linearization have been proposed in the literature (de Freitas 1999, de Freitas, Niranjan,Gee and Dou
et 2000, Dou
et 1998, Pitt and Shephard 1999). For example, in (de Freitaset al. 2000), the EKF Gaussian approximation is used as the proposal distribution for aparti
le �lter. In this paper, we follow the same approa
h, but repla
e the EKF proposalby a UKF proposal. The resulting �lter should perform better not only be
ause the UKFis more a

urate, but be
ause it also allows one to 
ontrol the rate at whi
h the tails ofthe proposal distribution go to zero. That is, the UKF 
an be used to generate proposaldistributions with larger high order moments and with means that are 
lose to the truemean of the target distribution.The last remark is the 
rux of our approa
h. We will show theoreti
ally and empiri
allythat parti
le �lters with a proposal distribution obtained using the UKF outperform otherexisting �lters. For 
omparison purposes, we will also present parti
le �lters that use theEKF to generate the proposal distribution.The remainder of this paper is organized as follows. Se
tion 2 introdu
es the notationand the general state-spa
e model formulation. Se
tion 3 introdu
es the EKF and UKF,while se
tions 4 and 5 are devoted to the theory and implementation details of parti
le�lters. After dis
ussing the short
omings of standard parti
les in Se
tion 6, we propose thenew uns
ented parti
le �lter. Se
tion 7 treats the 
onvergen
e aspe
ts of this �lter. Someexperimental results are dis
ussed in Se
tion 8. Finally, Se
tion 9 
ontains some 
on
ludingremarks and pointers for future resear
h.
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2 Dynami
 State-Spa
e ModelThe general state-spa
e model (negle
ting 
ontrol inputs for the sake of 
larity) 
an bebroken down into a state transition and state measurement modelp(xtjxt�1) (1)p(ytjxt) (2)where xt 2 Rnx denotes the states (hidden variables or parameters) of the system at timet and yt 2 Rny the observations. The states follow a �rst order Markov pro
ess andthe observations are assumed to be independent given the states. For example, if we areinterested in nonlinear, non-Gaussian regression, the model 
an be expressed as followsxt = f(xt�1;vt�1) (3)yt = h(ut;xt;nt) (4)where, in this 
ase, yt 2 Rny denotes the output observations, ut 2 Rnu the input obser-vations, xt 2 Rnx the state of the system, vt 2 Rnv the pro
ess noise and nt 2 Rnn themeasurement noise. The mappings f : Rnx �Rnv 7! Rnx and h : Rnx �Rnn 7! Rny representthe deterministi
 pro
ess and measurement models. To 
omplete the spe
i�
ation of themodel, the prior distribution (at t = 0) is denoted by p(x0).The posterior density p(x0:tjy1:t), where x0:t = fx0;x1; : : : ;xtg and y1:t = fy1;y2; : : : ;ytg,
onstitutes the 
omplete solution to the sequential estimation problem. In many appli
a-tions, su
h as tra
king, it is of interest to estimate one of its marginals, namely the �lteringdensity p(xtjy1:t). By 
omputing the �ltering density re
ursively, we do not need to keeptra
k of the 
omplete history of the states. Thus, from a storage point of view, the �lteringdensity is more parsimonious than the full posterior density fun
tion. If we know the �lter-ing density, we 
an easily derive various estimates of the system's states in
luding means,modes, medians and 
on�den
e intervals. This will be our goal.3 The EKF and Uns
ented Kalman FiltersIn this se
tion, we shall present the EKF and uns
ented �lters, whi
h provide Gaussian ap-proximations to p(xtjy1:t). These algorithms will be in
orporated into the parti
le �lteringframework in Se
tion 6.3.1 The Extended Kalman FilterThe EKF is a minimum mean-square-error (MMSE) estimator based on the Taylor seriesexpansion of the nonlinear fun
tions f and h around the estimates �xtjt�1 of the states xt3



(Anderson and Moore 1979). For examplef(xt) = f(�xtjt�1) + �f(xt)�xt ��� (xt=�xtjt�1)(xt � �xtjt�1) + � � �Using only the linear expansion terms, it is easy to derive the following update equations forthe mean �x and 
ovarian
e P of the Gaussian approximation to the posterior distributionof the states �xtjt�1 = f(�xt�1; 0)Ptjt�1 = FtPt�1FTt +GtQtGTtKt = Ptjt�1HTt [UtRtUTt +HtPtjt�1HTt ℄�1�xt = �xtjt�1 +Kt �yt � h(�xtjt�1; 0)�Pt = Ptjt�1 �KtHtPtjt�1 (5)where Kt is known as the Kalman gain, Q is the varian
e of the pro
ess noise (assumed tobe zero-mean Gaussian), R is the varian
e of the measurement noise (also assumed to bezero-mean Gaussian), Ft , �f(xt)�xt ��� (xt=�xtjt�1) and Gt , �f(vt)�vt ��� (vt=�v) are the Ja
obians ofthe pro
ess model and Ht , �h(xt)�xt ��� (xt=�xtjt�1) and Ut , �h(nt)�nt ��� (nt=�n) are the Ja
obians ofthe measurements model,3.2 The Uns
ented Kalman FilterThe uns
ented Kalman �lter (UKF) is a re
ursive MMSE estimator that addresses someof the approximation issues of the EKF (Julier and Uhlmann 1997b). Be
ause the EKFonly uses the �rst order terms of the Taylor series expansion of the nonlinear fun
tions,it often introdu
es large errors in the estimated statisti
s of the posterior distributions ofthe states. This is espe
ially evident when the models are highly nonlinear and the lo
allinearity assumption breaks down, i.e., the e�e
ts of the higher order terms of the Taylorseries expansion be
omes signi�
ant. Unlike the EKF, the UKF does not approximate thenon-linear pro
ess and observation models, it uses the true nonlinear models and rather ap-proximates the distribution of the state random variable. In the UKF the state distributionis still represented by a Gaussian random variable (GRV), but it is spe
i�ed using a minimalset of deterministi
ally 
hosen sample points. These sample points 
ompletely 
apture thetrue mean and 
ovarian
e of the GRV, and when propagated through the true nonlinearsystem, 
aptures the posterior mean and 
ovarian
e a

urately to the 2nd order for anynonlinearity, with errors only introdu
ed in the 3rd and higher orders. To elaborate on this,we start by �rst explaining the uns
ented transformation. After this the s
aled uns
entedtransformation (SUT) is introdu
ed and dis
ussed. The s
aled uns
ented transformation is4



a generalizing extension of the uns
ented transformation and forms the algorithmi
 
ore ofthe uns
ented Kalman �lter.3.2.1 The uns
ented transformationThe uns
ented transformation (UT) is a method for 
al
ulating the statisti
s of a randomvariable whi
h undergoes a nonlinear transformation and builds on the prin
iple that it iseasier to approximate a probability distribution than an arbitrary nonlinear fun
tion (Julierand Uhlmann 1996). Consider propagating a nx dimensional random variable x through anarbitrary nonlinear fun
tion g : Rnx 7! Rny to generate y,y = g(x) (6)Assume x has mean �x and 
ovarian
e Px. To 
al
ulate the statisti
s (�rst two moments)of y using the UT, we pro
eed as follows: First, a set of 2nx+1 weighted samples or sigmapoints Si = fWi;X ig are deterministi
ally 
hosen so that they 
ompletely 
apture the truemean and 
ovarian
e of the prior random variable x. A sele
tion s
heme that satis�es thisrequirement isX 0 = �x W0 = �=(nx + �) i = 0X i = �x+ �p(nx + �)Px�i Wi = 1=f2(nx + �)g i = 1; : : : ; nxX i = �x� �p(nx + �)Px�i Wi = 1=f2(nx + �)g i = nx + 1; : : : ; 2nx (7)where � is a s
aling parameter and �p(nx + �)Px�i is the ith row or 
olumn of the ma-trix square root of (nx + �)Px. Wi is the weight asso
iated with the ith point su
h thatP2nxi=0 Wi = 1. Ea
h sigma point is now propagated through the nonlinear fun
tionY i = g(X i) i = 0; : : : ; 2nx (8)and the estimated mean and 
ovarian
e of y are 
omputed as follows�y = 2nxXi=0 WiY i (9)Py = 2nxXi=0 Wi (Y i � �y) (Y i � �y)T : (10)These estimates of the mean and 
ovarian
e are a

urate to the se
ond order (third order forGaussian priors) of the Taylor series expansion of g(x) for any nonlinear fun
tion. Errorsare introdu
ed in the third and higher order moments but are s
aled by the 
hoi
e of theparameter �. In 
omparison, the EKF only 
al
ulates the posterior mean and 
ovarian
ea

urately to the �rst order with all higher order moments trun
ated. For a detailed proof5



Actual (sampling) Linearized (EKF) UT

y = f(x) Py = ATPxA�y = f(�x)f(�x) Y = f(X )
ATPxA

sigma points

true mean
transformed sigma points

UT mean

    and covariance
weighted sample mean

covariance
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mean

UT covarianceFigure 1: S
hemati
 diagram of the Uns
ented Transformation: A 
loud of 5000 samplesdrawn from a Gaussian prior is propagated through an arbitrary highly nonlinear fun
tionand the true posterior sample mean and 
ovarian
e are 
al
ulated. This re
e
ts the truthas 
al
ulated by a Monte Carlo approa
h and is shown in the left plot. Next, the posteriorrandom variable's statisti
s are 
al
ulated by a linearization approa
h as used in the EKF.The middle plot shows these results. The errors in both the mean and 
ovarian
e as 
al
u-lated by this \�rst-order" approximation is 
learly visible. The right plot shows the resultsof the estimates 
al
ulated by the uns
ented transformation. There is almost no bias errorin the estimate of the mean and the estimated 
ovarian
e is also mu
h 
loser to the true
ovarian
e. The superior performan
e of the UT is 
learly evident.of this, see (Julier and Uhlmann 1996). A 
omparison of the performan
e of the UT versusthat of the linearization approa
h used in the EKF is shown in Figure 1.The sigma point sele
tion s
heme used in the UT has the property that as the dimension ofthe state-spa
e in
reases, the radius of the sphere that bounds all the sigma points in
reasesas well. Even though the mean and 
ovarian
e of the prior distribution are still 
aptured
orre
tly, it does so at the 
ost of sampling non-lo
al e�e
ts. If the nonlinearities in questionare very severe, this 
an lead to signi�
ant diÆ
ulties. In order to address this problem, thesigma points 
an be s
aled towards or away from the mean of the prior distribution by a6



proper 
hoi
e of �. The distan
e of the ith sigma point from �x, jX i � �xj, is proportional top(nx + �). When � = 0, the distan
e is proportional to pnx. When � > 0 the points ares
aled further from �x and when � < 0 the points are s
aled towards �x. For the spe
ial 
aseof � = 3� nx, the desired dimensional s
aling invarian
e is a
hieved by 
an
eling the e�e
tof nx. However, when � = 3 � nx < 0 the weight W0 < 0 and the 
al
ulated 
ovarian
e
an be non-positive semide�nite. The s
aled uns
ented transformation was developed toaddress this problem (Julier 2000).3.2.2 The s
aled uns
ented transformationThe s
aled uns
ented transformation (SUT) repla
es the original set of sigma points witha transformed set given byX 0i = X 0 + �(X i �X 0) i = 0 : : : 2nx; (11)where � is a positive s
aling parameter whi
h 
an be made arbitrarily small to minimizehigher order e�e
ts. This formulation gives an extra degree of freedom to 
ontrol thes
aling of the sigma points without 
ausing the resulting 
ovarian
e to possibly be
omenon-positive semide�nite. This is a
hieved by applying the UT to an auxiliary randomvariable propagation problem whi
h is related to the original nonlinear model of equation(6) by z = g0(x) = g [�x+ �(x� �x)℄� g(�x)�2 + g(�x): (12)The Taylor series expansion of �z and Pz agrees with that of �y and Py exa
tly up to these
ond order, with the higher order terms s
aling geometri
ally with a 
ommon ratio of�. The same se
ond order a

ura
y of the normal UT is thus retained with a 
ontrollables
aling of the higher order errors by a proper 
hoi
e of �. The auxiliary random variableformulation of the SUT is identi
al to applying the original UT on a pre-s
aled set of sigmapoints (Julier 2000). A set of sigma points S = fW;X g is 
al
ulated using equation (7)and then transformed into the s
aled set S 0 = fW0 ;X 0g byX 0i = X 0 + �(X i �X 0)W 0i = 8<: W0=�2 + (1� 1=�2) i = 0Wi=�2 i 6= 0 (13)where � is the new sigma point s
aling parameter. The sigma point sele
tion and s
aling
an also be 
ombined into a single step (thereby redu
ing the number of 
al
ulations) bysetting � = �2(nx + �)� nx (14)7



and sele
ting the sigma point set by:X 0 = �xX i = �x+ �p(nx + �)Px�i i = 1; : : : ; nxX i = �x� �p(nx + �)Px�i i = nx + 1; : : : ; 2nxW (m)0 = �=(nx + �)W (
)0 = �=(nx + �) + (1� �2 + �)W (m)i =W (
)i = 1=f2(nx + �)g i = 1; : : : ; 2nx (15)The weighting on the zeroth sigma point dire
tly a�e
ts the magnitude of the errors inthe fourth and higher order terms for symmetri
 prior distributions (Julier 2000). A thirdparameter, �, is thus introdu
ed whi
h a�e
ts the weighting of the zeroth sigma point forthe 
al
ulation of the 
ovarian
e. This allows for the minimization of higher order errors ifprior knowledge (i.e. kurtosis, et
.) of the distribution of x is available.The 
omplete s
aled uns
ented transformation is thus given by the following:1. Choose the parameters �, � and �. Choose � � 0 to guarantee positive semi-de�niteness of the 
ovarian
e matrix. The spe
i�
 value of kappa is not 
riti
al though,so a good default 
hoi
e is � = 0. Choose 0 � � � 1 and � � 0. � 
ontrols the \size" ofthe sigma point distribution and should ideally be a small number to avoid samplingnon-lo
al e�e
ts when the nonlinearities are strong. � is a non-negative weightingterm whi
h 
an be used to in
orporate knowledge of the higher order moments of thedistribution. For a Gaussian prior the optimal 
hoi
e is � = 2. This parameter 
analso be used to 
ontrol the error in the kurtosis whi
h a�e
ts the 'heaviness' of thetails of the posterior distribution.2. Cal
ulate the set of 2nx + 1 s
aled sigma points and weights S = fW;X g by setting� = �2(nx + �) � nx and using the 
ombined sele
tion/s
aling s
heme of equation(15). As mentioned earlier, nx is the dimension of x.3. Propagate ea
h sigma point through the nonlinear transformationY i = g (X i) i = 0; : : : ; 2nx4. The mean �y and 
ovarian
e Py are 
omputed as follows�y = 2nxXi=0 W (m)i Y iPy = 2nxXi=0 W (
)i fY i � �yg fYi � �ygT8



3.2.3 Implementing the Uns
ented Kalman FilterThe Uns
ented Kalman Filter (UKF) is a straightforward appli
ation of the s
aled uns
entedtransformation to re
ursive minimum mean-square-error (RMMSE) estimation (Julier andUhlmann 1997b), where the state random variable (RV) is rede�ned as the 
on
atenationof the original state and noise variables: xat = [xTt vTt nTt ℄T . The SUT sigma point sele
tions
heme is applied to this new augmented state RV to 
al
ulate the 
orresponding sigmamatrix, X at . The 
omplete UKF algorithm that updates the mean �x and 
ovarian
e P ofthe Gaussian approximation to the posterior distribution of the states is given by:1. Initialize with: �x0 = E[x0℄P0 = E[(x0 � �x0)(x0 � �x0)T ℄�xa0 = E[xa℄ = [�xT0 0 0℄T
Pa0 = E[(xa0 � �xa0)(xa0 � �xa0)T ℄ = 2664 P0 0 00 Q 00 0 R 37752. For t 2 f1; : : : ;1g,(a) Cal
ulate sigma points:X at�1 = h�xat�1 �xat�1 �q(na + �)Pat�1i(b) Time update:X xtjt�1 = f �X xt�1;X vt�1��xtjt�1 = 2naXi=0 W (m)i X xi;tjt�1Ptjt�1 = 2naXi=0 W (
)i [X xi;tjt�1 � �xtjt�1℄[X xi;tjt�1 � �xtjt�1℄TY tjt�1 = h�X xtjt�1;X nt�1��ytjt�1 = 2naXi=0 W (m)i Yi;tjt�19



(
) Measurement update equations:P~yt~yt = 2naXi=0 W (
)i [Yi;tjt�1 � �ytjt�1℄[Yi;tjt�1 � �ytjt�1℄TPxtyt = 2naXi=0 W (
)i [Xi;tjt�1 � �xtjt�1℄[Yi;tjt�1 � �ytjt�1℄TKt = PxtytP�1~yt~yt�xt = �xtjt�1 +Kt(yt � �ytjt�1)Pt = Ptjt�1 �KtP~yt~ytKTtwhere, xa = [xT vT nT ℄T , X a = [(X x)T (X v)T (X n)T ℄T , �=
omposite s
aling pa-rameter, na = nx + nv + nn, Q=pro
ess noise 
ov., R= measurement noise 
ov.,K=Kalman gain,Wi=weights as 
al
ulated in Eqn. 15.Note that no expli
it 
al
ulation of Ja
obians or Hessians are ne
essary to implementthis algorithm. The UKF requires 
omputation of a matrix square root whi
h 
an beimplemented dire
tly using a Cholesky fa
torization in order n3x=6. However, the 
ovarian
ematri
es 
an be expressed re
ursively, and thus the square-root 
an be 
omputed in ordern2x by performing a re
ursive update to the Cholesky fa
torization. So, not only does theUKF outperform the EKF in a

ura
y and robustness, it does so at no extra 
omputational
ost. The superior performan
e of the UKF over that of the EKF have been reported innumerous publi
ations in
luding (Wan et al. 2000, Wan and van der Merwe 2000, Chongand Kleeman 1997, Julier and Uhlmann 1997b, Julier and Uhlmann 1997a, Clark 1999).This is the most general form of the uns
ented Kalman �lter. For the spe
ial (but oftenfound) 
ase where the pro
ess and measurement noise are purely additive, the 
omputational
omplexity of the UKF 
an be redu
ed. In su
h a 
ase, the system state need not beaugmented with the noise RV's. This redu
es the dimension of the sigma points as wellas the total number of sigma points used. The 
ovarian
es of the noise sour
es are thenin
orporated into the state 
ovarian
e using a simple additive pro
edure. For more details,see (Julier and Uhlmann 1997b).4 Parti
le FilteringWe have so far presented two nonlinear �ltering strategies that rely on Gaussian approxi-mation. In this se
tion, we shall present a �ltering method (parti
le �ltering) that does notrequire this assumption. However, it has other problems as we will point out in Se
tion 6.In that se
tion, we will show that it is possible to over
ome some of the problems inherent10



to parti
le �lters by 
ombining them with the EKF and UKF strategies in a theoreti
allyvalid setting.In re
ent years, many resear
hers in the statisti
al and signal pro
essing 
ommunitieshave, almost simultaneously, proposed several variations of parti
le �ltering algorithms. Inre
ent years, many resear
hers in the statisti
al and signal pro
essing 
ommunities have, al-most simultaneously, proposed several variations of parti
le �ltering algorithms. As pointedout in (Liu, Chen and Logvinenko 2000), basi
 sequential Monte Carlo methods, based onsequential importan
e sampling, had already been introdu
ed in the physi
s and statis-ti
s literature in the �fties! (Hammersley and Morton 1954, Rosenbluth and Rosenbluth1955). These methods were also introdu
ed in the automati
 
ontrol �eld in the late sixties(Dou
et 1998, Hands
hin and Mayne 1969). In the seventies, various resear
hers 
ontinuedworking on these ideas (Akashi and Kumamoto 1977, Hands
hin 1970, Zaritskii, Svetnikand Shimelevi
h 1975). However, all these earlier implementations were based on plainsequential importan
e sampling, whi
h, as we shall see later, degenerates with time. Themajor 
ontribution towards allowing this 
lass of algorithm to be of any pra
ti
al use wasthe in
lusion of a resampling stage in the early nineties (Gordon et al. 1993). Sin
e thenmany new improvements have been proposed (Dou
et et al. 2000).Before presenting parti
le �ltering algorithms, we need to review perfe
t Monte Carlosimulation and importan
e sampling. This will allow us to present parti
le �lters in a verygeneral setting.4.1 Perfe
t Monte Carlo SimulationIn Monte Carlo simulation, a set of weighted parti
les (samples), drawn from the posteriordistribution, is used to map integrals to dis
rete sums. More pre
isely, the posterior 
an beapproximated by the following empiri
al estimatebp(x0:tjy1:t) = 1N NXi=1 Æx(i)0:t(dx0:t)where the random samples fx(i)0:t; i = 1; : : : ; Ng, are drawn from the posterior distributionand Æ(d�) denotes the Dira
 delta fun
tion. Consequently, any expe
tations of the formE�gt(x0:t)� = Z gt(x0:t)p(x0:tjy1:t)dx0:tmay be approximated by the following estimateE�gt(x0:t)� = 1N NXi=1 gt(x(i)0:t)11



where the parti
les x(i)0:t are assumed to be independent and identi
ally distributed (i.i.d.) forthe approximation to hold. A

ording to the law of large numbers, we have E�gt(x0:t)� a:s:����!N!1E�gt(x0:t)�, where a:s:����!N!1 denotes almost surely 
onvergen
e. Moreover, if the posteriorvarian
e of gt(x0:t) is bounded, that is varp(�jy1:t)�gt(x0:t)� <1, then the following 
entrallimit theorem holdspN�E�gt(x0:t)�� E�gt(x0:t)�� =)N!1 N�0; varp(�jy1:t)�gt(x0:t)��where =)N!1 denotes 
onvergen
e in distribution.4.2 Bayesian Importan
e SamplingAs mentioned in the previous se
tion, one 
an approximate the posterior distribution witha fun
tion on a �nite dis
rete support. Consequently, it follows from the strong law of largenumbers that as the number or samples N in
reases, expe
tations 
an be mapped intosums. Unfortunately, it is often impossible to sample dire
tly from the posterior densityfun
tion. However, we 
an 
ir
umvent this diÆ
ulty by sampling from a known, easy-to-sample, proposal distribution q(x0:tjy1:t) and making use of the following substitutionE�gt(x0:t)� = Z gt(x0:t)p(x0:tjy1:t)q(x0:tjy1:t)q(x0:tjy1:t)dx0:t= Z gt(x0:t)p(y1:tjx0:t)p(x0:t)p(y1:t)q(x0:tjy1:t)q(x0:tjy1:t)dx0:t= Z gt(x0:t)wt(x0:t)p(y1:t) q(x0:tjy1:t)dx0:twhere the variables wt(x0:t) are known as the unnormalized importan
e weightswt = p(y1:tjx0:t)p(x0:t)q(x0:tjy1:t) (16)We 
an get rid of the unknown normalizing density p(y1:t) as followsE�gt(x0:t)� = 1p(y1:t) Z gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:t= R gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:tR p(y1:tjx0:t)p(x0:t) q(x0:tjy1:t)q(x0:tjy1:t)dx0:t= R gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:tR wt(x0:t)q(x0:tjy1:t)dx0:t= E q(�jy1:t )�wt(x0:t)gt(x0:t)�E q(�jy1:t )�wt(x0:t)�where the notation E q(�jy1:t ) has been used to emphasize that the expe
tations are taken overthe proposal distribution q(�jy1:t). Hen
e, by drawing samples from the proposal fun
tion12



q(�jy1:t), we 
an approximate the expe
tations of interest by the following estimateE�gt(x0:t)� = 1=NPNi=1 gt(x(i)0:t)wt(x(i)0:t)1=NPNi=1 wt(x(i)0:t)= NXi=1 gt(x(i)0:t) ewt(x(i)0:t) (17)where the normalized importan
e weights ew(i)t are given byew(i)t = w(i)tPNj=1w(j)tThe estimate of equation (17) is biased as it involves a ratio of estimates. However, it ispossible to obtain asymptoti
 
onvergen
e and a 
entral limit theorem for E�gt(x0:t)� underthe following assumptions (Dou
et 1998, Geweke 1989):1. x(i)0:t 
orresponds to a set of i.i.d. samples drawn from the proposal distribution, thesupport of the proposal distribution in
ludes the support of the posterior distributionand E�gt(x0:t)� exists and is �nite.2. The expe
tations of wt and wtg2t (x0:t) over the posterior distribution exist and are�nite.A suÆ
ient 
ondition to verify the se
ond assumption is to have bounds on the varian
e ofgt(x0:t) and on the importan
e weights (Geweke 1989, Crisan and Dou
et 2000). Thus, asN tends to in�nity, the posterior density fun
tion 
an be approximated arbitrarily well bythe point-mass estimate bp(x0:tjy1:t) = NXi=1 ew(i)t Æx(i)0:t(dx0:t)4.3 Sequential Importan
e SamplingIn order to 
ompute a sequential estimate of the posterior distribution at time t withoutmodifying the previously simulated states x0:t�1, proposal distributions of the followingform 
an be used, q(x0:tjy1:t) = q(x0:t�1jy1:t�1)q(xtjx0:t�1;y1:t) ; (18)Here we are making the assumption that the 
urrent state is not dependent on futureobservations, i.e., we're doing �ltering and not smoothing. It needs to be emphasized thatmore general proposals, whi
h modify previously simulated traje
tories, might be ne
essaryin some s
enarios (Pitt and Shephard 1999). This issue is, however, beyond the s
ope of13



this paper. Under our assumptions that the states 
orrespond to a Markov pro
ess andthat the observations are 
onditionally independent given the states, we getp(x0:t) = p(x0) tYj=1 p(xjjxj�1) and p(y1:tjx0:t) = tYj=1 p(yj jxj) (19)By substituting equations (18) and (19) into equation (16), a re
ursive estimate for theimportan
e weights 
an be derived as followswt = p(y1:tjx0:t)p(x0:t)q(x0:t�1jy1:t�1)q(xtjx0:t�1;y1:t)= wt�1 p(y1:tjx0:t)p(x0:t)p(y1:t�1jx0:t�1)p(x0:t�1) 1q(xtjx0:t�1;y1:t)= wt�1 p(ytjxt)p(xtjxt�1)q(xtjx0:t�1;y1:t) (20)Equation (20) provides a me
hanism to sequentially update the importan
e weights,given an appropriate 
hoi
e of proposal distribution, q(xtjx0:t�1;y1:t). The exa
t form ofthis distribution is a 
riti
al design issue and is usually approximated in order to fa
ilitateeasy sampling. The details of this is dis
ussed in the next se
tion. Sin
e we 
an samplefrom the proposal distribution and evaluate the likelihood and transition probabilities, allwe need to do is generate a prior set of samples and iteratively 
ompute the importan
eweights. This pro
edure, known as sequential importan
e sampling (SIS), allows us toobtain the type of estimates des
ribed by equation (17).4.3.1 Choi
e of proposal distributionThe 
hoi
e of proposal fun
tion is one of the most 
riti
al design issues in importan
esampling algorithms and forms the main issue addressed in this paper. The preferen
e forproposal fun
tions that minimize the varian
e of the importan
e weights is advo
ated by(Dou
et 1997). The following result has been proved:Proposition 1 [Proposition 3 of (Dou
et, Gordon and Krishnamurthy 1999)℄ The proposaldistribution q(xtjx0:t�1;y1:t) = p(xtjx0:t�1;y1:t) minimizes the varian
e of the importan
eweights 
onditional on x0:t�1 and y1:t.This 
hoi
e of proposal distribution has also been advo
ated by other resear
hers (Kong,Liu and Wong 1994, Liu and Chen 1995, Zaritskii et al. 1975). Nonetheless, the distributionq(xtjx0:t�1;y1:t) $ p(xtjxt�1) (21)(the transition prior) is the most popular 
hoi
e 3 of proposal fun
tion (Avitzour 1995, Bea-dle and Djuri�
 1997, Gordon et al. 1993, Isard and Blake 1996, Kitagawa 1996). Although3A $ B implies that we 
hoose B to approximate A.14



it results in higher Monte Carlo variation than the optimal proposal p(xtjx0:t�1;y1:t), as aresult of it not in
orporating the most re
ent observations, it is usually easier to implement(Berzuini, Best, Gilks and Larizza 1997, Dou
et 1998, Liu and Chen 1998). The transitionprior is de�ned in terms of the probabilisti
 model governing the states' evolution (3) andthe pro
ess noise statisti
s. For example, if an additive Gaussian pro
ess noise model isused, the transition prior is simply,p(xtjxt�1) = N (f (xt�1; 0) ; Qt�1) : (22)As illustrated in Figure 2, if we fail to use the latest available information to proposenew values for the states, only a few parti
les will have signi�
ant importan
e weightswhen their likelihood are evaluated. It is therefore of paramount importan
e to move theparti
les towards the regions of high likelihood. This problem also arises when the likelihoodfun
tion is too narrow 
ompared to the prior. In Se
tions 6 and 7, we shall des
ribe severalalgorithms, based on linearization and the uns
ented transformation, to implement theoptimal importan
e fun
tion.4.3.2 Degenera
y of the SIS algorithmThe SIS algorithm dis
ussed so far has a serious limitation: the varian
e of the importan
eweights in
reases sto
hasti
ally over time. In order to show this we begin by expandingEquation (16),
.

LikelihoodPrior

Figure 2: The optimal importan
e distribution allows us to move the samples in the priorto regions of high likelihood. This is of paramount importan
e if the likelihood happensto lie in one of the tails of the prior distribution, or if it is too narrow (low measurementerror).
15



wt = p(y1:tjx0:t)p(x0:t)q(x0:tjy1:t)= p(y1:t;x0:t)q(x0:tjy1:t)= p(x0:tjy1:t)p(y1:t)q(x0:tjy1:t)/ p(x0:tjy1:t)q(x0:tjy1:t) (23)The ratio in the last line4 of Equation (23) is 
alled the importan
e ratio and it 
an beshown that its varian
e in
reases over time. For a proof of this, see (Kong et al. 1994) and(Dou
et et al. 1999). We thus state (without proof):Proposition 2 [Page 285 of (Kong et al. 1994), proposition 4 of (Dou
et et al. 1999)℄The un
onditional varian
e (that is, when the observations are regarded as random) of theimportan
e ratios in
reases over time.To understand why the varian
e in
rease poses a problem, suppose that we want tosample from the posterior. In that 
ase, we want the proposal density to be very 
lose5 tothe posterior density. When this happens, we obtain the following results for the mean andvarian
e (see (Dou
et 1997) for a proof)E q(�jy1:t )�p(x0:tjy1:t)q(x0:tjy1:t)� = 1and varq(�jy1:t)�p(x0:tjy1:t)q(x0:tjy1:t)� = E q(�jy1:t )��p(x0:tjy1:t)q(x0:tjy1:t) � 1�2� = 0In other words, we want the varian
e to be 
lose to zero in order to obtain reasonableestimates. Therefore, a varian
e in
rease has a harmful e�e
t on the a

ura
y of the sim-ulations. In pra
ti
e, the degenera
y 
aused by the varian
e in
rease 
an be observed bymonitoring the importan
e weights. Typi
ally, what we observe is that, after a few iter-ations, one of the normalized importan
e weights tends to 1, while the remaining weightstend to zero. A large number of samples are thus e�e
tively removed from the sampleset be
ause their importan
e weights be
ome numeri
ally insigni�
ant. The next se
tionpresents a strategy to redu
e this degeneration or depletion of samples.4The proportionality in the last line of the equation follows from the fa
t that p(y1:t) is a 
onstant.5Closeness is de�ned over the full support of the true posterior. This implies that the best possible (butnot pra
ti
al) 
hoi
e for the proposal is q(x0:tjy1:t) = p(x0:tjy1:t)16



4.4 Sele
tionTo avoid the degenera
y of the SIS simulation method, a sele
tion (resampling) stage maybe used to eliminate samples with low importan
e weights and multiply samples with highimportan
e weights. It is possible to see an analogy to the steps in geneti
 algorithms(Higu
hi 1997).A sele
tion s
heme asso
iates to ea
h parti
le x(i)0:t a number of \
hildren", say Ni 2 N,su
h that PNi=1Ni = N . Several sele
tion s
hemes have been proposed in the literature.These s
hemes satisfy E�Ni� = N ew(i)t but their performan
e varies in terms of the varian
eof the parti
les var�Ni�. Results in (Kitagawa 1996) and (Crisan, Del Moral and Lyons1999) indi
ate that the restri
tion E�Ni� = N ew(i)t is unne
essary to obtain 
onvergen
eresults. So it is possible to design biased but 
omputationally inexpensive sele
tion s
hemes.We will now present a number of sele
tion or resampling s
hemes, namely: sampling-importan
e resampling (SIR), residual resampling and minimum varian
e sampling. Wefound that the spe
i�
 
hoi
e of resampling s
heme does not signi�
antly a�e
t the per-forman
e of the parti
le �lter, so we used residual resampling in all of the experiments inSe
tion 9.4.4.1 Sampling-importan
e resampling (SIR) and multinomial samplingMany of the ideas on resampling have stemmed from the work of Efron (Efron 1982),Rubin (Rubin 1988) and Smith and Gelfand (Smith and Gelfand 1992). Resampling in-volves mapping the Dira
 random measure fx(i)0:t; ew(i)t g into an equally weighted random
sampling

Index

i

j resampled index p(i)

cdf   

1

( )j
tw�

1N −

Figure 3: Resampling pro
ess, whereby a random measure fx(i)1:t; ew(i)t g is mapped into anequally weighted random measure fx(j)1:t ; N�1g. The index i is drawn from a uniform distri-bution. 17



measure fx(j)0:t ; N�1g. This 
an be a

omplished by sampling uniformly from the dis
reteset fx(i)0:t; i = 1; : : : ; Ng with probabilities f ew(i)t ; i = 1; : : : ; Ng as proposed in the seminalpaper of Gordon, Salmond and Smith (1993). A mathemati
al proof of this 
an be foundon pages 111{112 of (Gordon 1994). Figure 3 shows a way of sampling from this dis
reteset. After 
onstru
ting the 
umulative distribution of the dis
rete set, a uniformly drawnsampling index i is proje
ted onto the distribution range and then onto the distributiondomain. The interse
tion with the domain 
onstitutes the new sample index j. That is,the ve
tor x(j)0:t is a

epted as the new sample. Clearly, the ve
tors with the larger samplingweights will end up with more 
opies after the resampling pro
ess.Sampling N times from the 
umulative dis
rete distribution PNi=1 ew(i)t Æx(i)0:t(dx0:t) isequivalent to drawing (Ni; i = 1; : : : ; N) from a multinomial distribution with parametersN and ew(i)t . This pro
edure 
an be implemented in O (N) operations (Dou
et 1998, Pittand Shephard 1999) following the work of (Ripley 1987, pp. 96). As we are sampling froma multinomial distribution, the varian
e is var(Ni) = N ew(i)t �1 � ew(i)t �. As pointed out in(Carpenter, Cli�ord and Fearnhead 1999) and (Liu and Chen 1998), it is possible to designsele
tion s
hemes with lower varian
e.4.4.2 Residual resamplingThis pro
edure involves the following steps (Higu
hi 1997, Liu and Chen 1998). Firstly,set eNi = jN ew(i)t k. Se
ondly, perform an SIR pro
edure to sele
t the remaining N t =N �PNi=1 eNi samples with new weights w0(i)t = N�1t � ew(i)t N � eNi�. Finally, add the resultsto the 
urrent eNi. For this s
heme, the varian
e �var(Ni) = N tw0(i)t �1 � w0(i)t �� is smallerthan the one given by the SIR s
heme. Moreover, this pro
edure is 
omputationally 
heaper.4.4.3 Minimum varian
e samplingThis strategy in
ludes the strati�ed/systemati
 sampling pro
edures introdu
ed in (Kita-gawa 1996) and the Tree Based Bran
hing Algorithm presented in (Crisan 2000). Onesamples a set of N points U in the interval [0; 1℄, ea
h of the points a distan
e N�1 apart.The number of 
hildren Ni is taken to be the number of points that lie between Pi�1j=1 ew(j)tand Pij=1 ew(j)t . This strategy introdu
es a varian
e on Ni even smaller than the residualresampling s
heme, namely var(Ni) = N tw0(i)t �1�N tw0(i)t �. Its 
omputational 
omplexityis O (N).
18



5 The Parti
le Filter AlgorithmWe have so far explained how to 
ompute the importan
e weights sequentially and how toimprove the sample set by resampling. The pseudo-
ode of a generi
 parti
le �lter 
an nowbe presented.
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Generi
 Parti
le Filter1. Initialization: t = 0� For i = 1; : : : ; N; draw the states x(i)0 from the prior p(x0).2. For t = 1; 2; : : :(a) Importan
e sampling step� For i = 1; : : : ; N , sample bx(i)t � q(xtjx(i)0:t�1;y1:t) and set bx(i)0:t , �x(i)0:t�1; bx(i)t �� For i = 1; : : : ; N , evaluate the importan
e weights up to a normalizing 
onstant:w(i)t = w(i)t�1 p(ytjbx(i)t )p(bx(i)t jx(i)t�1)q(bx(i)t jx(i)0:t�1;y1:t) (24)� For i = 1; : : : ; N , normalize the importan
e weights:ew(i)t = w(i)t � NXj=1w(j)t ��1(b) Sele
tion step (resampling)� Multiply/Suppress samples bx(i)0:t with high/low importan
e weights ew(i)t , respe
-tively, to obtain N random samples x(i)0:t approximately distributed a

ording top(x(i)0:tjy1:t).� For i = 1; : : : ; N , set w(i)t = ew(i)t = 1N(
) Output: The output of the algorithm is a set of samples that 
an be used to approxi-mate the posterior distribution as followsp (x0:tjy1:t) � bp (x0:tjy1:t) = 1N NXi=1 Æ(x(i)0:t) (dx0:t)One obtains straightforwardly the following estimate of E (gt (x0:t))E (gt (x0:t)) = Z gt (x0:t) p (x0:tjy1:t) dx0:t � 1N NXi=1 gt �x(i)0:t�for some fun
tion of interest gt : (Rnx )(t+1) ! Rngt integrable with respe
t top (x0:tjy1:t). Examples of appropriate fun
tions in
lude the marginal 
onditional meanof x0:t, in whi
h 
ase gt (x0:t) = xt, or the marginal 
onditional 
ovarian
e of x0:twith gt (x0:t) = xtx0t� Ep( xtjy1:t) [xt℄ E 0p( xtjy1:t) [xt℄. The marginal 
onditional meanis often the quantity of interest, be
ause it is the optimal MMSE estimate of the
urrent state of the system.
20
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~Figure 4: In this example, a standard parti
le �lter starts at time t� 1 with an unweightedmeasure fex(i)t�1; N�1g, whi
h provides an approximation of p(xt�1jy1:t�2). For ea
h parti
lewe 
ompute the importan
e weights using the information at time t � 1. This results inthe weighted measure fex(i)t�1; ew(i)t�1g, whi
h yields an approximation p(xt�1jy1:t�1). Subse-quently, the resampling step sele
ts only the \�ttest" parti
les to obtain the unweightedmeasure fex(i)t�1; N�1g, whi
h is still an approximation of p(xt�1jy1:t�1) . Finally, the sam-pling (predi
tion) step introdu
es variety, resulting in the measure fex(i)t ; N�1g, whi
h is anapproximation of p(xtjy1:t�1).A graphi
al representation of the algorithm is shown in Figure 4. The generi
 PFalgorithm is rather straightforward to implement, but to make it robust, we need to 
onsidersome improvements dis
ussed in the following se
tion.6 Improving Parti
le FiltersThe su

ess of the PF algorithm depends on the validity of the following underlying as-sumptions:Monte Carlo (MC) assumption : The Dira
 point-mass approximation provides an ad-equate representation of the posterior distribution.21



Importan
e sampling (IS) assumption : It is possible to obtain samples from the pos-terior by sampling from a suitable proposal distribution and applying importan
esampling 
orre
tions.If any of these 
onditions are not met, the PF algorithm 
an perform poorly. The dis-
reteness of the approximation poses a resolution problem. In the resampling stage, anyparti
ular sample with a high importan
e weight will be dupli
ated many times. As a result,the 
loud of samples may eventually 
ollapse to a single sample. This degenera
y will limitthe ability of the algorithm to sear
h for lower minima in other regions of the error surfa
e.In other words, the number of samples used to des
ribe the posterior density fun
tion willbe
ome too small and inadequate. A brute for
e strategy to over
ome this problem is toin
rease the number of parti
les. A more re�ned strategy is to implement a Markov 
hainMonte Carlo (MCMC) step after the sele
tion step as dis
ussed in the following subse
tion.6.1 MCMC Move StepAfter the sele
tion s
heme at time t, we obtain N parti
les distributed marginally approx-imately a

ording to p(x0:tjy1:t). Sin
e the sele
tion step favors the 
reation of multiple
opies of the \�ttest" parti
les, it enables us to tra
k time varying �ltering distributions.However, many parti
les might end up having no 
hildren (Ni = 0), whereas others mightend up having a large number of 
hildren, the extreme 
ase being Ni = N for a parti
ularvalue i. In this 
ase, there is a severe depletion of samples. We, therefore, require a pro-
edure to introdu
e sample variety after the sele
tion step without a�e
ting the validity ofthe approximation.A strategy for solving this problem involves introdu
ing MCMC steps of invariant dis-tribution p(x0:tjy1:t) on ea
h parti
le (Andrieu, de Freitas and Dou
et 1999b, Carpenteret al. 1999, Dou
et and Gordon 1999, Gilks and Berzuini 1998, Ma
Ea
hern, Clyde andLiu 1999). The basi
 idea is that if the parti
les are distributed a

ording to the posteriorp(ex0:tjy1:t), then applying a Markov 
hain transition kernel K(x0:tjex0:t), with invariant dis-tribution p(x0:tjy1:t) su
h that R K(x0:tjex0:t)p(ex0:tjy1:t) = p(x0:tjy1:t), still results in a set ofparti
les distributed a

ording to the posterior of interest. However, the new parti
les mighthave been moved to more interesting areas of the state-spa
e. In fa
t, by applying a Markovtransition kernel, the total variation of the 
urrent distribution with respe
t to the invariantdistribution 
an only de
rease. Note that we 
an in
orporate any of the standard MCMCmethods, su
h as the Gibbs sampler and Metropolis Hastings algorithms, into the �lteringframework, but we no longer require the kernel to be ergodi
. The MCMC move step 
analso be interpreted as sampling from the �nite mixture distribution N�1PNi=1K(x0:tjex(i)0:t).22



Convergen
e results for this type of algorithm are presented in (Gilks and Berzuini 1998).One 
an generalize this idea by introdu
ing MCMC steps on the produ
t spa
e withinvariant distribution NQi=1 p(x(i)0:tjy1:t), that is to apply MCMC steps on the entire populationof parti
les. It should be noted that independent MCMC steps spread out the parti
les in aparti
ular mode more evenly, but do not explore modes devoid of parti
les, unless \
lever"proposal distributions are available. By adopting MCMC steps on the whole population, we
an draw upon many of the ideas developed in parallel MCMC 
omputation. In this work,however, we limit ourselves to the simpler 
ase of using independent MCMC transitionssteps on ea
h parti
le. In the 
ase of standard parti
le �lters, we propose to sample fromthe transition prior and a

ept a

ording to a Metropolis-Hastings (MH) step as follows.Smoothing MH step� Sample v � U[0;1℄.� Sample the proposal 
andidate x?(i)t � p(xtjx(i)t�1)� If v � min�1; p(ytjx?(i)t )p(ytjex(i)t ) �{ then a

ept move: x(i)0:t = �ex(i)0:t�1;x?(i)t �{ else reje
t move: x(i)0:t = ex(i)0:tEnd If.It is possible, however, to use more 
omplex proposals su
h as mixtures of Metropolis-Hastings steps to ensure an eÆ
ient exploration of the sample spa
e (de Freitas 1999). Itis even possible to implement reversible jump MCMC steps (Green 1995) so as to allowthe parti
les to move from one subspa
e to other subspa
es of, possibly, di�erent dimension(Andrieu, de Freitas and Dou
et 1999a). Later, we shall des
ribe MCMC steps that use theEKF and uns
ented �lters to generate the proposal distributions.6.2 Designing Better Importan
e ProposalsThe importan
e sampling approximation depends on how 
lose the proposal distribution isto the posterior distribution. As illustrated in Figure 2, if the likelihood is too peaked or ifthere is little overlap between the prior and the likelihood, one needs to move the samples23



to regions of high likelihood. Various approa
hes have been proposed to solve this problem.We present some of them.6.2.1 Prior editing, reje
tion methods and auxiliary parti
le �ltersPrior editing (Gordon et al. 1993) is an ad-ho
 a

eptan
e test for proposing parti
les inregions of high likelihood. After the predi
tion step, the residual error et = yt � ht(bx(i)t ) is
omputed. If jetj > Klpr, where r is the s
ale of the measurement error model and Kl is a
onstant 
hosen to indi
ate the region of non-negligible likelihood, then the sample bx(i)t isreje
ted. The pro
edure is repeated until a spe
i�ed number of parti
les is a

epted. Theproblem with this approa
h is that it is too heuristi
 and 
an be 
omputationally intensiveunless the reje
tion rate is small. In addition, it introdu
es a bias on the distribution of theparti
les.Reje
tion methods: If the likelihood is bounded, say p(ytjxt) < Mt, it is possibleto sample from the optimal importan
e distribution p(xtjxt�1;yt) using an a

ept/reje
tpro
edure. Firstly, we obtain a sample from the prior bx � p(xtjxt�1) and a uniform vari-able u � U[0;1℄. Subsequently, the sample from the prior is a

epted if u � p(ytjbxt)=Mt.Otherwise, we reje
t the proposed sample and repeat the pro
ess until N samples are a
-
epted. Unfortunately, the reje
tion sampler requires a random number of iterations at ea
htime step. This proves to be 
omputationally expensive in high-dimensional spa
es (Dou
et1998, M�uller 1991, Pitt and Shephard 1999).The auxiliary parti
le �lter (Pitt and Shephard 1999) allows us to obtain approximatesamples from the optimal importan
e distribution by introdu
ing an auxiliary variable k.Spe
i�
ally, the aim of the algorithm is to draw samples from the joint distributionq(xt; kjx0:t�1;y1:t) / p(ytj�(k)t )p(xtjx(k)t�1)p(x(k)1:t�1jy1:t�1)where �(k)t ; k = 1; : : : ; N is the mean, mode, draw, or some other value asso
iated withthe transition prior. One way to a

omplish this obje
tive is to evaluate the marginalauxiliary variable weights g(kjx0:t�1;y1:t) / p(ytj�(k)t )p(x(k)1:t�1jy1:t�1) and use them to sele
tM parti
les from the transition prior. Typi
ally, one boosts the sample set so that M > N .The parti
le �lter then pro
eeds to evaluate the 
orre
tion weightswt = p(ytjx(j)t )p(ytj�(kj)t )where j = 1; : : : ;M and kj denotes the k-th \parent" of parti
le j. Finally, the 
orre
tionweights are used to perform a se
ond sele
tion step to obtain N parti
les approximatelydistributed a

ording to the posterior distribution.24



In 
omparison to the SIR �lter, the auxiliary parti
le �lter 
an generate better estimatesof the posterior whenever the likelihood is situated in one of the priors tails. On theother hand, if the likelihood and prior 
oin
ide, the SIR �lter 
an produ
e more a

urateestimates. The latter behavior is a 
onsequen
e of the extra varian
e introdu
ed by theadditional sele
tion step.One alternative way of viewing the auxiliary parti
le �lter is to interpret the distribu-tion q(xt; kjx0:t�1;y1:t) as the importan
e proposal. In doing so, the following importan
eweights are obtained wt / p(x(k)0:t jy1:t)p(ytj�(k)t )p(xtjx(k)t�1)p(x(k)1:t�1jy1:t�1)/ p(ytjx(k)t )p(xtjx(k)t�1)p(x(k)1:t�1jy1:t�1)p(ytj�(k)t )p(xtjx(k)t�1)p(x(k)1:t�1jy1:t�1)= p(ytjx(k)t )p(ytj�(k)t )The three methods presented above for designing better proposal distributions havenumerous ineÆ
ien
ies as dis
ussed in the literature. For this reason we didn't in
ludethem in the �lter set used for the experiments in Se
tion 9. We presented them here for
ompleteness though and refer the reader to the literature for more detail and experimentalresults.6.2.2 Lo
al linearizationThis is a popular method for devising proposal distributions that approximate the optimalimportan
e distribution, by in
orporating the most 
urrent observation with the optimalGaussian approximation of the state: see (Dou
et 1998, Pitt and Shephard 1999) for exam-ple. It relies on the �rst order Taylor series expansions of the likelihood and transition prioras des
ribed in Se
tion 3.1, as well as a Gaussian assumption on all the random variablesin question. In this framework, the EKF approximates the optimal MMSE estimator of thesystem state by 
al
ulating the 
onditional mean of the state, given all of the observations.This is done in re
ursive framework, by propagating the Gaussian approximation of theposterior distribution through time, 
ombining it at ea
h time step with the new observa-tion. In other words, the EKF 
al
ulates the following re
ursive approximation to the trueposterior �ltering density, p(xtjy1:t) � pN (xtjy1:t) = N ��xt; bPt� (25)Within the parti
le �lter framework, a separate EKF is used to generate and propagate25



a Gaussian proposal distribution for ea
h parti
le, i.e.,q(x(i)t jx(i)0:t�1;y1:t) $ N ��x(i)t ; bP(i)t � i = 1; : : : ; N: (26)That is, at time t�1 one uses the EKF equations, with the new data, to 
ompute the meanand 
ovarian
e of the importan
e distribution for ea
h parti
le. Next, we sample the i-thparti
le from this distribution. The method requires that we propagate the 
ovarian
e bP (i)and spe
ify the EKF pro
ess and measurement noise 
ovarian
es. This new �lter is 
alledthe extended Kalman parti
le �lter.Sin
e the EKF is an MMSE estimator, this lo
al linearization method leads to an im-proved annealed sampling algorithm, whereby the varian
e of ea
h proposal distribution
hanges with time. Ideally, we start sear
hing over a large region of the error surfa
e andas time progresses, we 
on
entrate on the regions of lower error.Although the EKF moves the prior towards the likelihood, thus possibly 
reating abetter proposal distribution, this is done at the 
ost of making a Gaussian assumption onthe form of the posterior as well as introdu
ing ina

ura
ies due to linearization. Whenwe 
ompare the form of Equation (25) to the Gaussian transition prior of Equation (22),we see that EKF generated proposal distribution does indeed in
lude the e�e
t of the most
urrent observation at time t. In general though (even with additive Gaussian pro
essand measurement noise models), the true form of this density will not be Gaussian. This
an easily be shown using a Bayes rule expansion of the proposal distribution. Be
auseof this, we have to experimentally determine if we are gaining more than we lose in �lterperforman
e. The results of this is shown in Se
tion 9. The uns
ented parti
le �lter wasdeveloped to address some of the short-
omings of the extended Kalman parti
le �lter andis presented in Se
tion 7.The pseudo-
ode for the extended Kalman parti
le �lter follows.
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Extended Kalman parti
le �lter1. Initialization: t = 0� For i = 1; : : : ; N; draw the states (parti
les) x(i)0 from the prior p(x0).2. For t = 1; 2; : : :(a) Importan
e sampling step� For i = 1; : : : ; N :{ Compute the Ja
obians F(i)t & G(i)t and H(i)t & U(i)t of the pro
ess andmeasurement models.{ Update the parti
les with the EKF:�x(i)tjt�1 = f(x(i)t�1)P(i)tjt�1 = F(i)t P(i)t�1FT (i)t +G(i)t QtGT (i)tKt = P(i)tjt�1HT (i)t [U(i)t RtUT (i)t +H(i)t P(i)tjt�1HT (i)t ℄�1�x(i)t = �x(i)tjt�1 +Kt(yt � h(�x(i)tjt�1))bP(i)t = P(i)tjt�1 �KtH(i)t P(i)tjt�1{ Sample bx(i)t � q(x(i)t jx(i)0:t�1;y1:t) = N ��x(i)t ; bP(i)t �{ Set bx(i)0:t , �x(i)0:t�1; bx(i)t � and bP(i)0:t , �P(i)0:t�1; bP(i)t �� For i = 1; : : : ; N , evaluate the importan
e weights up to a normalizing 
onstant:w(i)t / p(ytjbx(i)t )p(bx(i)t jx(i)t�1)q(bx(i)t jx(i)0:t�1;y1:t)� For i = 1; : : : ; N , normalize the importan
e weights.(b) Sele
tion step� Multiply/Suppress parti
les (bx(i)0:t; bP(i)0:t) with high/low importan
e weights ew(i)t ,respe
tively, to obtain N random parti
les (ex(i)0:t; eP(i)0:t).(
) MCMC step (optional)� Apply a Markov transition kernel with invariant distribution given by p(x(i)0:tjy1:t)to obtain (x(i)0:t;P(i)0:t).(d) Output: The output is generated in the same manner as for the generi
 parti
le �lter.
27



The optional MCMC step 
onsists of the MH algorithm wit
h uses the EKF to generatea proposal distribution, as follows. EKF MH step� Sample v from a uniform distribution: v � U[0;1℄.� Compute the Ja
obians F?(i)t & G?(i)t and H?(i)t & U?(i)t of the pro
ess and measurementmodels.� Update the states (parti
les) with the EKF:�x?(i)tjt�1 = f(ex(i)t�1)P?(i)tjt�1 = F?(i)t ePt�1F?T (i)t +G?(i)t QtG?T (i)tKt = P?(i)tjt�1H?T (i)t [U?(i)t RtU?T (i)t +H?(i)t P?(i)tjt�1H?T (i)t ℄�1�x?(i)t = �x?(i)tjt�1 +Kt(yt � h(�x?(i)tjt�1))P?(i)t = P?(i)tjt�1 �KtH?(i)t P?(i)tjt�1 (27)� Sample the 
andidate x?(i)t � q(xtjex(i)0:t�1;y1:t) = N ��x?(i)t ;P?(i)t �� If v � min�1; p(ytjx?(i)t )p(x?(i)t jex(i)t�1)q(extjex(i)0:t�1;y1:t)p(ytjex(i)t )p(ex(i)t jex(i)t�1)q(x?(i)t jex(i)0:t�1;y1:t)�{ then a

ept move: x(i)0:t = �ex(i)0:t�1;x?(i)t �P(i)0:t = �eP(i)0:t�1;P?(i)t �{ else reje
t move: x(i)0:t = ex(i)0:tP(i)0:t = eP(i)0:tEnd If.In the following se
tion, we introdu
e one te
hnique that should in general perform betterthan reje
tion methods or extended Kalman �lter expansions.7 The Us
ented Parti
le FilterAs shown in Se
tion 3, the uns
ented Kalman �lter (UKF) is able to more a

uratelypropagate the mean and 
ovarian
e of the Gaussian approximation to the state distribution,than the EKF. In 
omparison to the EKF, the UKF tends to generate more a

urate28



estimates of the true 
ovarian
e of the state. Distributions generated by the UKF generallyhave a bigger support overlap with the true posterior distribution than the overlap a
hievedby the EKF estimates. This is in part related to the fa
t that the UKF 
al
ulates theposterior 
ovarian
e a

urately to the 3rd order, whereas the EKF relies on a �rst orderbiased approximation. This makes the UKF a better 
andidate for more a

urate proposaldistribution6 generation within the parti
le �lter framework. The UKF also has the abilityto s
ale the approximation errors in the higher order moments of the posterior distribution,eg. kurtosis, et
., allowing for heavier tailed distributions. Be
ause the sigma point setused in the UKF is deterministi
ally designed to 
apture 
ertain 
hara
teristi
 of the priordistribution, one 
an expli
itly optimize the algorithm to work with distributions that haveheavier tails than Gaussian distributions, i.e. Cau
hy or Student-t distributions. This
hara
teristi
 makes the UKF very attra
tive for the generation of proposal distributions.The new �lter that results from using a UKF for proposal distribution generation withina parti
le �lter framework is 
alled the Uns
ented Parti
le Filter (UPF), and is the majornew 
ontribution of this paper.The pseudo-
ode of the UPF followsUns
ented Parti
le Filter1. Initialization: t = 0� For i = 1; : : : ; N; draw the states (parti
les) x(i)0 from the prior p(x0) and set,�x(i)0 = E[x(i)0 ℄P(i)0 = E[(x(i)0 � �x(i)0 )(x(i)0 � �x(i)0 )T ℄�x(i)a0 = E[x(i)a℄ = [(�x(i)0 )T 0 0℄TP(i)a0 = E[(x(i)a0 � �x(i)a0 )(x(i)a0 � �x(i)a0 )T ℄ = 2664 P(i)0 0 00 Q 00 0 R 3775Continued .... 6Like the EKF, the UKF also in
orporates the latest observations, but this is done in a more a

urateway.
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2. For t = 1; 2; : : :(a) Importan
e sampling step� For i = 1; : : : ; N :{ Update the parti
les with the UKF:� Cal
ulate sigma points:X (i)at�1 = ��x(i)at�1 �x(i)at�1 �q(na + �)P(i)at�1�� Propagate parti
le into future (time update):X (i)xtjt�1 = f �X (i)xt�1 ;X (i)vt�1� �x(i)tjt�1 = 2naXj=0W (m)j X (i)xj;tjt�1P(i)tjt�1 = 2naXj=0W (
)j [X (i)xj;tjt�1 � �x(i)tjt�1℄[X (i)xj;tjt�1 � �x(i)tjt�1℄TY(i)tjt�1 = h�X (i)xtjt�1;X (i)nt�1� �y(i)tjt�1 = 2naXj=0W (m)j Y(i)j;tjt�1� In
orporate new observation (measurement update):P~yt~yt = 2naXj=0W (
)j [Y(i)j;tjt�1 � �y(i)tjt�1℄[Y(i)j;tjt�1 � �y(i)tjt�1℄TPxtyt = 2naXj=0W (
)j [X (i)j;tjt�1 � �x(i)tjt�1℄[Y(i)j;tjt�1 � �y(i)tjt�1℄TKt = PxtytP�1~yt~yt �x(i)t = �x(i)tjt�1 +Kt(yt � �y(i)tjt�1)bP(i)t = P(i)tjt�1 �KtP~yt~ytKTt{ Sample bx(i)t � q(x(i)t jx(i)0:t�1; ;y1:t) = N ��x(i)t ; bP(i)t �{ Set bx(i)0:t , �x(i)0:t�1; bx(i)t � and bP(i)0:t�P(i)0:t�1; bP(i)t �� For i = 1; : : : ; N , evaluate the importan
e weights up to a normalizing 
onstant.w(i)t / p(ytjbx(i)t )p(bx(i)t jx(i)t�1)q(bx(i)t jx(i)0:t�1;y1:t)� For i = 1; : : : ; N , normalize the importan
e weights.(b) Sele
tion step� Multiply/Suppress parti
les (bx(i)0:t; bP(i)0:t) with high/low importan
e weights ew(i)t ,respe
tively, to obtain N random parti
les (ex(i)0:t; eP(i)0:t).(
) MCMC step (optional)� Apply a Markov transition kernel with invariant distribution p(x(i)0:tjy1:t) to obtain(x(i)0:t;P(i)0:t).(d) Output: The output is generated in the same manner as for the generi
 parti
le �lter.30



8 Theoreti
al Convergen
eLet B (Rn) be the spa
e of bounded, Borel measurable fun
tions on Rn . We denote kfk ,supx2Rn jf (x)j. The following theorem is a straightforward 
onsequen
e of Theorem 1 in (Crisanand Dou
et 2000), whi
h is an extension of previous results in (Crisan et al. 1999).Theorem 1 If the importan
e weightwt / p (ytjxt) p (xtjxt�1)q (xtjx0:t�1;y1:t) (28)is upper bounded for any (xt�1;yt) and if one uses one of the sele
tion s
hemes des
ribedpreviously, then, for all t � 0, there exists 
t independent of N su
h that for any ft 2B �Rnx�(t+1)� E 24 1N NXi=1 ft �x(i)0:t�� Z ft (x0:t) p (dx0:tjy1:t)!235 � 
t kftk2N : (29)The expe
tation in equation (29) is with respe
t to the randomness introdu
ed by theparti
le �ltering algorithm. This 
onvergen
e result shows that, under very loose assump-tions, 
onvergen
e of the (uns
ented) parti
le �lter is ensured and that the 
onvergen
erate of the method is independent of the dimension of the state-spa
e. The only 
ru
ialassumption is to ensure that wt is upper bounded, that is that the proposal distributionq (xtjx0:t�1;y1:t) has heavier tails than p (ytjxt) p (xtjxt�1). Considering this theoreti
alresult, it should not be surprising that the UKF, whi
h provides a better approximationto the higher moments of the �ltering distribution than the EKF, yields better proposaldistributions than the EKF within the parti
le �ltering framework. In the following se
tion,we present a few experiments that 
on�rm this 
onje
ture.9 ExperimentsWe 
ompared the performan
e of the Uns
ented Parti
le Filter to that of the other nonlin-ear �lters on two estimation problems. The �rst problem is a syntheti
, s
alar estimationproblem and the se
ond is a real world problem 
on
erning the pri
ing of �nan
ial instru-ments.9.1 Syntheti
 ExperimentFor this experiment, a time-series was generated by the following pro
ess modelxt+1 = 1 + sin(!�t) + �1xt + vt (30)31



where vt is a Gamma Ga(3; 2) random variable modeling the pro
ess noise, and ! = 4e� 2and �1 = 0:5 are s
alar parameters. A non-stationary observation model,yt = 8<: �2x2t + nt t � 30�3xt � 2 + nt t > 30 (31)is used, with �2 = 0:2 and �3 = 0:5. The observation noise, nt, is drawn from a Gaussiandistribution N (0; 0:00001). Given only the noisy observations, yt, the di�erent �lters wereused to estimate the underlying 
lean state sequen
e xt for t = 1 : : : 60. The experimentwas repeated 100 times with random re-initialization for ea
h run. All of the parti
le �ltersused 200 parti
les and residual resampling (see Se
tion 4.4 for details on resampling). TheSUT parameters were set to � = 1, � = 0 and � = 2. These parameters are optimal forthe s
alar 
ase. Table 1 summarizes the performan
e of the di�erent �lters. The tableshows the means and varian
es of the mean-square-error (MSE) of the state estimates.Figure 5 
ompares the estimates generated from a single run of the di�erent parti
le �lters.The superior performan
e of the uns
ented parti
le �lter (UPF) is 
learly evident. Figure6 shows the estimates of the state 
ovarian
e generated by a stand-alone EKF and UKFfor this problem. Noti
e how the EKF's estimates are 
onsistently smaller than thosegenerated by the UKF. This property makes the UKF better suited than the EKF forproposal distribution generation within the parti
le �lter framework.Algorithm MSEmean varExtended Kalman Filter (EKF) 0.374 0.015Uns
ented Kalman Filter (UKF) 0.280 0.012Parti
le Filter : generi
 0.424 0.053Parti
le Filter : MCMC move step 0.417 0.055Parti
le Filter : EKF proposal 0.310 0.016Parti
le Filter : EKF proposal and MCMC move step 0.307 0.015Parti
le Filter : UKF proposal (\Uns
ented Parti
le Filter") 0.070 0.006Parti
le Filter : UKF proposal and MCMC move step 0.074 0.008Table 1: State estimation experiment results. This plot shows the mean and varian
e ofthe MSE 
al
ulated over 100 independent runs.
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Figure 6: EKF and UKF estimates of the state 
ovarian
e.9.2 Pri
ing �nan
ial optionsDerivatives are �nan
ial instruments whose value depends on some basi
 underlying 
ashprodu
t, su
h as interest rates, equity indi
es, 
ommodities, foreign ex
hange or bonds33



(Hull 1997). An option is a parti
ular type of derivative that gives the holder the rightto do something. For example, a 
all option allows the holder to buy a 
ash produ
t, ata spe
i�ed date in the future, for a pri
e determined in advan
e. The pri
e at whi
h theoption is exer
ised is known as the strike pri
e, while the date at whi
h the option lapses isoften referred to as the maturity time. Put options, on the other hand, allow the holder tosell the underlying 
ash produ
t.The Bla
k S
holes partial di�erential equation is, essentially, the main industry standardfor pri
ing options (Hull 1997). It relates the 
urrent value of an option (f) to the 
urrentvalue of the underlying 
ash produ
t (S), the volatility of the 
ash produ
t (�) and therisk-free interest rate (r) as follows�f�t + rS �f�S + 12�2S2 �2f�S2 = rfThis basi
 equation is only valid under several 
onditions, namely no risk-less arbitrage op-portunities, an instantaneous risk-less portfolio, 
ontinuous trading, no dividends, 
onstantvolatility and risk-free interest rate. In addition, the 
ash produ
t is assumed to be di
tatedby the following geometri
 Brownian motion modeldSS = �dt+ ��dtwhere � is the expe
ted return and � 
orresponds to a random sample from a standardizednormal distribution (with mean zero and unit varian
e). In their seminal work (Bla
k andS
holes 1973), Bla
k and S
holes derived the following solutions for pri
ing European 
alland put options C = SN
(d1)�Xe�rtmN
(d2) (32)P = �SN
(�d1) +Xe�rtmN
(�d2) (33)where C denotes the pri
e of a 
all option, P the pri
e of a put option, X the strike pri
e,tm the time to maturity, N
(:) is the 
umulative normal distribution, and d1 and d2 aregiven by d1 = ln(S=X) + (r + �2=2)tm�ptmd2 = d1 � �ptmThe volatility is usually estimated from a small moving window of data over the mostre
ent 50 to 180 days (Hull 1997). The risk-free interest rate is often estimated by monitoringinterest rates in the bond markets. In our approa
h, whi
h follows from (Niranjan 1996),we use the state-spa
e representation to model the system given by equations (32) and (33).34



We treat r and � as the hidden states and C and P as the output observations. tm and Sare treated as known 
ontrol signals (input observations). We believe that this approa
h isbetter sin
e it 
onstitutes a more natural way of dealing with the sequential behavior andnon-stationarity of the data. In the end, we are able to 
ompute daily 
omplete probabilitydistributions for r and � and to de
ide whether the 
urrent value of an option in the marketis being either over-pri
ed or under-pri
ed.Typi
ally, options on a parti
ular equity and with the same exer
ise date are tradedwith several strike pri
es. For example, in our experiments, we used �ve pairs of 
all andput option 
ontra
ts on the British FTSE100 index (from February 1994 to De
ember 1994)to evaluate the pri
ing algorithms. For ea
h option on this set one 
an estimate a di�erentvolatility. By plotting the Bla
k-S
holes estimates of the volatilities against their respe
tivestrike pri
es, we obtain a 
urve whi
h is known as the volatility smile (Hull 1997). A wellknown pri
ing strategy is to leave one of the options out and then determine the volatilitysmile given by the other options. If the option that was left out is below the 
urve, it 
ouldmean that it is under-pri
ed by the market.
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ating that an option on the FTSE-100 index was over-pri
ed.The option value 10 days later 
on�rmed this hypothesis. Estimates obtained with a parti
le�lter [*℄, 4-th order polynomial �t [|℄ and hypothesized volatility [o℄.35



Figure 7 shows an example of this phenomenon obtained by tra
king 5 pairs of 
all andput option 
ontra
ts on the FTSE-100 index (1994) with a parti
le �lter. On the 50thday, option 4 seems to be over-pri
ed. The state of this option 10 days later 
on�rms thishypothesis. However, depending on the state of the parti
ular equity, some options mightremain under-pri
ed or over-pri
ed during their entire life-time. For example, if an optionon a 
ompany produ
t seems to be over-pri
ed a

ording to its volatility smile, but investorsknow that the 
ompany is being bought by a larger 
ompany with better management, theoption pri
e will remain higher than the smile predi
tion (Haugen 1990).In the sequential Monte Carlo framework, we 
an improve this trading strategy. Insteadof plotting a volatility smile, we plot a probability smile. That is, we 
an plot the probabilitydensity fun
tion of ea
h implied volatility against their respe
tive strike pri
es, as shown inFigure 8. This plot, 
learly, 
onveys more information than a simple plot of the posteriormean estimates.
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ates that the option with strike pri
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le�lter [*℄, 4-th order polynomial �t [|℄ and hypothesized volatility [o℄.The type of predi
tions obtained with the Uns
ented Parti
le Filter were very 
lose36



20 22 24 26 28 30 32 34 36 38

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

C
al

l p
ric

e

Actual price
Prediction  

10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

P
ut

 p
ric

e

Time (days)

Actual price
Prediction  

Figure 9: UPF one-step-ahead predi
tions on the 
all and put option's pri
es with 
on�den
eintervals (2 standard deviations).to the measured data as eviden
ed by Figure 9. Figure 10 shows the estimated volatilityand interest rate for a 
ontra
t with a strike pri
e of 3225. Plots of the evolution of theprobability distributions of the interest rate and volatility are depi
ted in Figures 11 and12. In Table 2, we 
ompare the one-step-ahead normalized square errors obtained with ea
hmethod on a pair of options with strike pri
e 2925. The normalized square errors are de�nedas follows NSEC =sXt (Ct � bCt)2NSEP =sXt (Pt � bPt)2where bCt and bPt denotes the one-step-ahead predi
tions of the 
all and put pri
es. Thesquare errors were only measured over the last 100 days of trading, so as to allow thealgorithms to 
onverge. The experiment was repeated 100 times and we used 100 parti
lesin ea
h parti
le �lter. This table shows that, this time both the EKF and UKF led to37
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Figure 12: Probability distribution of the implied volatility.Option type Algorithm NSEmean varTrivial 0.078 0.000Extended Kalman Filter (EKF) 0.037 0.000Uns
ented Kalman Filter (UKF) 0.037 0.000Call Parti
le Filter : generi
 0.037 0.000Parti
le Filter : EKF proposal 0.009 0.000Uns
ented Parti
le Filter 0.009 0.000Trivial 0.035 0.000Extended Kalman Filter (EKF) 0.023 0.000Uns
ented Kalman Filter (UKF) 0.023 0.000Put Parti
le Filter : generi
 0.023 0.000Parti
le Filter : EKF proposal 0.007 0.000Uns
ented Parti
le Filter 0.008 0.000Table 2: One-step-ahead normalized square errors over 100 runs. The trivial predi
tion isobtained by assuming that the pri
e on the following day 
orresponds to the 
urrent pri
e.
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the same improvement over standard parti
le �ltering. This is be
ause in this parti
ularinstan
e the pro
ess model is linear Gaussian and the nonlinearity of the measurementmodel is not too severe. This, however, will not be the 
ase in general. The importantthing is to noti
e that the UKF, used as a me
hanism to generate the proposal distribution,works well with a diÆ
ult real data set.10 Con
lusionsIn this paper, we proposed a new parti
le �lter that uses the UKF to generate the proposaldistribution. When the pro
ess and measurement models are either highly nonlinear or
ontain heavy tailed noise, the UKF produ
es proposal distributions that exhibit a largersupport overlap with the true posterior than the EKF proposal distributions, making it bet-ter suited for proposal distribution generation. Sin
e the UKF 
an also theoreti
ally haveheavier tails than the EKF, while still in
orporating the latest information before the evalu-ation of the importan
e weights, the theory predi
ts that this �lter 
an perform very well insituations where the likelihood is peaked or when one �nds outliers in the data. A syntheti
experiment and an experiment with real �nan
ial data showed that the uns
ented parti
le�lter 
an perform better than other sequential estimation algorithms. We hope in the futureto extend the range of appli
ations of the uns
ented parti
le �lter. Towards this purpose,we have made the software freely available at http://www.
s.berkeley.edu/~jfgf andhttp://varsha.e
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