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Abstract

Brain-machine interfaces (BMIs) use recordings from the nervous system to extract

volitional and motor parameters for controlling external actuators, such as prosthet-

ics, thereby bypassing or replacing injured tissue. As such, they show enormous

promise for restoring mobility, dexterity, or communication in paralyzed patients

or amputees. Recent advancements to the BMI paradigm have made the brain –

machine communication channel bidirectional, enabling the prosthetic to inform the

user about touch, temperature, strain, or other sensory information; these devices

are hence called brain-machine-brain interfaces (BMBIs).

In the first chapter an intraoperative BMI is investigated in human patients un-

dergoing surgery for implantation of a deep brain stimulation (DBS) treatment elec-

trodes. While the BMI was marginally effective, we found high levels of behavioral

and tremor tuning among cells recorded from the surgical targets, the subthalamic

nucleus (STN) and ventral intermediate nucleus (VIM) of the thalamus. Notably,

this tremor or behavior tuning was not mutually exclusive with oscillatory behavior,

suggesting that physiological tuning persists even in the face of pathological oscil-

lations. We then used nonlinear means for extracting tremor tuning, and found a

significant population, consistent with double-frequency or co-modulation to tremor

within the basal ganglia. Synchrony was then assessed over long and short timescales

between pairs of neurons, and it was found that tremor tuning implies synchrony:

all units exhibiting tremor tuning showed synchrony to at least one other unit.
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BMBIs rely on a host of both scientific knowledge and technology for effective

function, and this technology is currently in intensive research. In this dissertation

two technologies for BMBIs, corresponding to the two directions of communication,

are designed, described, and tested. The first one is a high compliance, digitally

controlled, high-side current-regulated microstimulator for intracortical microstimu-

lation (ICMS). The device is validated on the bench, tested in monkeys, and used

for multiple experimental setups. Due to careful control of parasitic charge injection,

the microstimulator is ideally suited for interleaving stimulation and recording as

employed in some BMBIs.

The second technology described is a wireless, scalable, 128 channel neural record-

ing system. The device features aggressive digital filtering to maximize signal quality,

has spike sorting and compression on the transceiver, can be fully configured over

the air through a custom wireless bridge and client software, and can run for over

30 hours on one battery. This system has been tested in a monkey while in its home

cage, where the wireless system permitted unfettered, continuous recording and con-

tinuous access to a simplified BMI. A full description of the development and device

is described, as well as results showing convincing 1D and suggestive 2D BMI control.

v



Perfection is achieved, not when there is nothing more to add, but when there is

nothing left to take away. – Antoine de Saint-Exupery

ö

Wit and puns aren’t just decor of the mind; they are essential signs that the mind

knows it’s on, recognizes its software, and can spot bugs in its own programming. –

Adam Gopnik

œ

The basal ganglia is the dark basement of the brain. – apocryphal, S. A. Wilson-

Kinnier

vi
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Introduction

My efforts in the laboratory of Miguel Nicolelis have been aimed at furthering the field

of brain-machine interfaces (BMIs). As the name suggests, a BMI connects brains

with machines, with the ultimate goal of replacing or helping paralyzed individuals

interact with the world, amputees control their prosthetic in a natural way, or for

alleviating disease states. Deep brain stimulation (DBS), a common and effective

treatment for the symptoms of Parkinson’s disease (PD) can also be considered a

brain-machine interface, albeit a simple unidirectional one. Though the propose

may appear divergent, DBS shares many of the underlying electrophysiology and

neuroanatomy underlying motor brain-machine interfaces (Benabid et al., 2011).

The hypothesis behind the field of motor BMIs is that if you can record voli-

tional control signals where they originate – in the CNS and, more specifically, the

cortex – then it should be possible to decode these signals and use them to control

a communication interface or prosthetic.

This hypothesis or task can be broken down into sub-tasks:

• Neural recording – the outgoing communication channel from the brain. In

the Nicolelis lab we use electrophysiology, though optical methods are rapidly
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advancing. Recording from neurons involves electrode technology, surgical pro-

cedures, biocompatability, electrode mounting and connection; all issues and

techniques that are vitally important and will be briefly reviewed.

• Neural stimulation – the incoming communication channel to the brain. While

optogenetics is presently revolutionizing this field, my work has focused on

electrical stimulation of nervous tissue, mainly intracortical microstimulation

(ICMS).

• Processing. This involves amplification, digitization, filtering, and sorting, and

has been the focus of my work. A wireless solution to these problems is pro-

posed, described, and tested in Chapter 4.

• Decoding. Mathematical transforms, like the Weiner filter and Kalman filter

(and variants) have been used successfully to decode motor commands and

volitional signals. I spent quite some time on this, and eventually decided that

the impoved fidelity (processing gain) of increased algorithmic sophistication

was not worth the concomitant complexity and code fragility.

• Prosthetic fabrication and control. While essentially important, this is largely

outside the scope of our lab.

The structure of this dissertation will be as follows. The remainder of this chap-

ter will roughly and chronologically cover past literature regarding microstimulation,

electrodes, technology for recording from electrodes, and a broad background be-

hind Parkinson’s disease, it’s etiology, and treatment. The intention is to embed

the DBS recordings, microstimulator, and recording hardware in a broader scientific

and engineering context. While the work presented in the following chapters does

not investigate electrodes, this seems to be the limiting step in BMI technology and

one that I hope to work on in the future, and so a literature review is carried out.
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Chapter 2 documents initial work which hoped to implement a BMI during intra-

operative recording from patients being implanted with DBS treatment electrodes.

While the Parkinsonian patients never did control a realtime BMI, the data we ob-

tained proved informative of synchrony, oscillations, and behavioral tuning within

the targeted subthalamic nucleus (STN) and ventral intermediate (Vim/Vop) thala-

mus, and reflects in a more nuanced way on the idiopathic etiology of PD. Chapter 3

then details the design and testing of computer-controlled high resolution microstim-

ulation hardware. Chapter 4 describes the development, structure, and testing of a

128-channel wireless neural recording system which has been used to allow monkeys

continuous access to a BMI while housed in their home cage. Preliminary results

from this experiment are presented. Chapter 5 synthesizes problems and future di-

rections in neuroprosthetic and Parkinson’s research. Appendix A includes the other

papers which I have co-authored, and Appendix B details the robot built to fabricate

the hardware needed for the lab.

1.1 Review of previous work

Science and technology have played a very tightly coupled role; much science has

been directed by the technology available, and much technology has been driven

by scientific understanding of the physical and biological world. For example, op-

tical stimulation (Boyden et al., 2005) has permitted more controlled probing of

the pathology of Parkinson’s disease (Gradinaru et al., 2009), two-photon imaging

(Denk et al., 1990) permits deeper and more precise observation of synaptic plastic-

ity (Grutzendler et al., 2002, 2011); sometimes technology precedes scientific under-

standing, which seems to be the case for DBS. We still do not fully understand how or

why DBS works, though there are several plausible theories (Gubellini et al., 2009;

Hashimoto et al., 2003; Plaha et al., 2008). Indeed, science and technology seem

to be created via the same iterative, experimental, cumulative, refining algorithms
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for building and verifying structures – only (very roughly) technology operates on

physical structures, and science on ideas.

I belabor this point as the present science of BMIs is limited by technology, and

a large part of the work described here deals with creation of technology designed to

move us closer to a clinical application of neurally controlled prosthetics.

1.2 Stimulation

A BMI can be thought of as having two communication channels – efferent via record-

ing, and afferent via stimulation. As stimulating the brain is technically simpler (a

current or voltage source and electrodes are all that are required), it has been a tool

for experimentation for well over a century. Fritsch and Hitzig (1870) were of the

first to use intracortical stimulation to probe the brains of dogs; it was a great leap

forward from the vivisectionists and those who “stimulated” (cauterized) the cor-

tex with potash. Though their cardboard batteries and bipolar DC stimulation was

technologically simple, the reasoning derived from it was not, as they were the first

to reveal how quickly the brain perishes without blood in comparison to the periph-

eral nerves and muscles, the first to show that the cortex, but not the striatum, is

responsive to electrical stimulation, and that there is a pre-central 1 organized map

of forelimb movements.

Shortly thereafter Bartholow tried a similar, albeit even less controlled, experi-

ment on Mary Rafferty. Mary had epithelioma which spread to necrose the cranium

above the central suclus on both sides of the midline to the point that the brain

dura could be seen pulsing within the scull. In the course of cleaning out the ensuing

infections, needles had been poked through the dura, leading Bartholow to reason

that stimulating electrodes could be introduced with little harm. He then, with

dubious patient disclosure and consent, tried several attempts of gross, one-battery

1 Back then it was called the Rolandic fissure.
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DC current-uncontrolled bipolar stimulation, and was able to induce contralateral

arm movements, speech, and eventually a seizure. Upon application of more voltage,

Mary went into grand mal seizures and 20 minute coma; the patient, likely due to a

combination of infection, stroke, and epilepsy kindled by the electrical stimulation,

died three days later (Bartholow, 1874). While the he had intended to resolve if DC

(then called “galvanic”) or AC (then “faradic”) current is better for stimulation, he

only proved that controlled current was absolutely essential. Though the experiment

was a disaster, Bartholow did prove that human cortex was as electrically excitable

as the dog; this and other studies marked a time when medical practice was shift-

ing from intuition and observation to treatment directed by empiricism and science,

especially from work on laboratory animals (Harris et al., 2009).

Wilder Penfield and Boldrey continued this work by applying ICMS to 163 pa-

tients being treated for seizures, brain tumors, or other central neurological problems.

In experiments that might not pass IRB approval today (despite their modern neu-

rosurgical procedures), they meticulously mapped the effect of ICMS proximal to the

central sulcus, fleshing out the cortical map of human motor control and somatosen-

sation, and leading to the idea of a cortical “homunculus”(Penfield and Boldrey,

1937).

Later Penfield and Perot were to carry this technique further during the treatment

of temporal lobe seizures. Electrical stimulation of the cortex was a direct and

effective method for locating the source of a seizure to be surgically removed, and a

necessary step for avoiding eloquent cortex. As their procedures required removing

the whole side of the cranium, Penfield was able to stimulate large parts of the

brain during the operations. This included the primary somatosensory and motor

cortices for calibrating current levels, a procedure used in our laboratory and others

today (Fitzsimmons et al., 2007). Within 1,288 surgeries, of which 520 where for

the treatment of temporal lobe epilepsy, 40 patients showed “experiential responses”
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elicited by ICMS to the temporal lobe. The descriptions of these are fantastic –

vivid and dreamy memories, art, music (a lot of music!), childbirth, counting, and

autobiographical stories.

Penfield and Perot’s pioneering stimulation studies led to some important con-

clusions. All experiential responses were within the realm of visual and auditory

interpretation, which meant this function was localized to the non-dominant tempo-

ral lobe. (The dominant lobe is concerned with speech, but most interestingly ICMS

there produces not speech but aphasia; c.f. stimulation to the non-dominant lobe

actively recalls memories.) Also quite remarkable was that removal of all or parts

of the temporal lobe to hopefully cure the epilepsy did not interfere with the recall

of the same memories elicited by ICMS there, strongly suggesting that storage and

access of the memories are separate. This despite the fact that the temporal lobe is

the only region of brain that ICMS is capable of forcing this type of recall. Penfield

noted that despite the likely large number of activated neurons in the cortex, only

one coherent idea resulted from these “gentile pulse trains”2 at a time, implying

that there is sufficiently strong inhibition in the cortex to enable mutual exclusion.

Finally, the neurologist observed that stimulated memories leave behind a temporal

“facilitation”, in that memories are likely to be highly related in a sequence of stim-

luations, even over a distance of several centimeters and a quarter of an hour. That

is, despite the wide possible breadth of memories ICMS might elicit from different

locations in the temporal lobe (all possible remembered experience), most of what

his patients reported followed a theme. For example, one patient had ICMS induced

hallucinations that all involved some aspect of grabbing – a man grabbing a rifle

from a cadet at a parade, a man snatching his hat from a hat-check girl, himself

pulling a stick from a dog’s mouth (Penfield and Perot, 1963).

2 He repeats this phrase several times, apparently in an effort to diffuse worries that he was
electrocuting the patients.
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While these stimulation experiments did much to elucidate the function of the

cortex (and brain in general, in a great many other studies), it does not generally

refine whether the cortex uses spatial or contextual/temporal coding of information.

The line deliminating multisensory and interpretive temporal corticies is sharp, yet

many different stimulation sites elicit the same memory further anterior. The coding

seems mixed, and evidence supporting both continues today.

As Penfield did with his numerous human patients, the primary initial animal-

experiment use of electrical stimulation was to determine the behavioral function of a

brain region. Doty summarizes the rich and fascinating literature documenting these

investigations. For example, ICMS to extrastriate cortex can elicit insect-grasping

responses in macaque monkeys, after which they will carefully examine their hands

to see what was caught. The same experiment was tried in humans; after ICMS

elicited a catching movement, the patient reported wanting to grab “that butterfly”.

Similarly complex behavior follows by stimulation of the rostral thalamus in humans

in the language dominant hemisphere, which caused a patient to utter “Now one goes

home” or “Thank you”, albeit with no memory of speaking. In opossums, stimulation

of the hypothalamus can elicit mating behaviors, but only if another opossum or furry

object is present. Stimulation in the periaqueductal gray will induce fear behavior in

rats, but none the less the rats will self-administer this stimulus repeatedly, so long

as its intensity does not exceed a certain value (Doty, 1969); this same behavior is

apparent, without the need for electrophysiology, in humans.

In cats, stimulation of the lateral hypothalamus induces both hunger and the

complex behavior required to eat3 (Wyrwicka and Doty, 1966). Other locales can

induce not hunger or feeding, but prey-catching attack behavior where cats will solve

3 “In one experiment, the meat in the bowl was replaced with a banana. Upon stimulation [to
the lateral hypothalamus] the cat quickly approached the bowl, sniffed the banana, turned away (in
some disgust and frustration!), searched the chamber again, returned to the banana etc, but would
not eat the banana.”
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puzzles in order to get access to a rat (Roberts and Kiess, 1964).

A more fundamental locale for motivation discovered by Olds and Milner: their

rats would repeatedly press a lever to obtain stimulation to the septal region of the

limbic system (Olds and Milner, 1954). Doty later observed that “Stimulation at

most sites in the limbic system has the still mysterious ability to organize motor

activity in any fashion required to produce more of the activity or to avoid it, as

the case may be.” This discovery, while used practically to motivate experimental

animals (Shinkman et al., 1974; Talwar et al., 2002), reflects rather deeply on the

simplifying principles used to structure, organize, and interpret behavior (Hofstadter,

2007).

In these cases the stimulation serves as an overpowering command or as a re-

inforcement, a signal which is very nonspecific in information content (a uniform

series of pulses or uniform frequency, up until this point) but specific in location. In

terms of BMIs, we are more interested in relaying sensory information, e.g. from a

prosthetic, which implies both time and spatial information. Initial work on sensory

ICMS was in terms of Skinner’s operant conditioning (Skinner, 1938). Stimulation

of nearly any part of the central nervous system (CNS) can serve as a conditioned

stimulus (CS) for classical conditioning, excluding the ventral nucleus of the thala-

mus (motor thalamus, discussed below in regard to DBS) and the cerebellum (Doty,

1969; Nielson et al., 1962). As the dura is extremely sensitive to mechanical and

electrical stimulation (Doty, 1969; Harris et al., 2009), it was initially not completely

proven that ICMS acted directly on the brain and not through the peripheral nervous

system (PNS)4. By severing the trigeminal and most other cranial nerves, and by

paralyzing the motor targets of the CS ICMS in classically conditioned cats, Doty

and colleagues conclusively proved that the cortex was the direct site of the CS (Doty

4 For example, initial work by Loucks (1935) used an induction coil to stimulate; this coil vibrated
ever so slightly when excited, which the experimental animals could feel.
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et al., 1956), and such conditioning did not require motor activity.

Such a CS is akin to a sense in that the brain can trigger or modify behavior

based upon it. Furthermore, macaque monkeys can spatially discriminate electrical

stimulation over the entirety of the cortex at widely varying frequencies and currents,

30-100 Hz, 0-700 µA (Doty et al., 1956) or 2-100 Hz and currents as low as 100 µA

(Doty, 1965). This makes ICMS a highly suitable means of conveying information

directly to the brain, though it does not bypass the state-dependence and complexity

of the sensory system, as the thresholds for stimulation throughout the brain were

found to strongly vary with arousal. Namely, ICMS to precentral cortex that was

below threshold and elicited no movement would begin to elicit movement if the

unconditioned stimulus (a shock) was applied or a loud unfamiliar sound (a truck

horn) was sounded (Doty, 1965). This may be useful, though: it shows ICMS can

be ignored much like other somatosensation.

Microstimulation has been used to verify learning on a much smaller scale in a

pioneering study by Bures and colleagues. Using low-frequency DC ICMS at very

low currents of 10-50 nA, which permitted simultaneous stimulation and recording

from the same neuron, they stimulated neurons in most of the major brain areas.

By applying this stimulation shortly after presentation of an audio tone, they were

able to train a few neurons to respond with both increased and decreased firing rate

to the tone. That is, they trained neurons to respond to sound, though admittedly

most of their successes were in the inferior colliculus (Bures and Buresova, 1967).

This amounts to Hebbs rule, verified in vivo.

A strong caveat in Bures and Buresova’s study is that there was no behavioral

control, so there was no way to tell if the auditory stimulus was reacted or attended

to. The authors themselves admit that some tuning observed may have resulted

from attending to, then habituating to, the tone used. A similar, and much more

successful, study was later done which linked auditory cortical recorganization /
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retuning to presentation of an auditory tone not via stimulation of the neuron itself,

but rather by paired microstimulation of the nucleus basalis, a partially acetylcholine

releasing center of the rat brain (Kilgard and Merzenich, 1998).

On a much larger scale Jose Delgado built upon the work of Doty and colleagues

in a spectacular demonstration of electrical stimulation. In one experiment Del-

gado stood in a Spanish bullring in the path of a charging bull; using his “stimo-

ceiver”, which wirelessly delivered current through electrodes to the bull’s caudate,

he abruptly stopped the animal and made it turn and walk away (Delgado, 1971).

See Figure 1.2. The stimoceiver is similar to the work described in Chapters 3 and

4 – it could record EEG signals from patients or experimental animals, and de-

liver stimulation current, all wirelessly. Delgado used his stimoceiver clincially in

a number of patients implanted with depth electrodes in the amygdala to diagnose

behavioral and affective epilepsy. His electrodes, 15 contacts on a 1.2mm diame-

ter shaft, spaced at 3mm, are similar though coarser than those used presently for

DBS surgeries; unlike DBS, however, he recorded and stimulated at the same sites.

Stimulation to these could produce “pleasant sensations, elation, deep, thoughtful,

concentration, odd feelings, super relaxation, colored visions, and other responses”,

and also a remarkable increase in volubility in one patient (Delgado et al., 1968)5.

Since then, ICMS has been used extensively as an investigational and techno-

logical tool in the striate cortex (V1, area 17) for the purposes of creating a visual

prosthetic for the blind both in macaques (Bartlett et al., 2005) and humans (Dobelle

et al., 1974), or the middle temporal visual area (MT, V5) for biasing motion per-

ception (Salzman et al., 1990), or biasing switching between reflexive and controlled

5 His work in monkeys is perhaps more remarkable: by implanting electrodes in the thalamus, he
could repeatedly get the monkey to walk from one side of the cage; stimulation to the posterior
ventral thalamus induces targeted & organized rage in monkeys; stimulation to the medial caudate
just behind the frontal lobes makes an alpha monkey tolerant and less aggressive. When this
function was enabled by pressing a button in the monkeys cage, the monkey most harassed learned
to press the button to halt the α males aggressive behavior. (Delgado, 1964)
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Figure 1.1: Jose Delgado with a bull controlled by his stimoceiver.

saccades (Isoda and Hikosaka, 2007), or in the lateral interparietal area (LIP) for

biasing decision making (Hanks et al., 2006), or affecting face recognition in inferior

temporal cortex (IT) (Afraz et al., 2006). In somatosensory cortex (S1, area 3b),

ICMS has been shown to simulate mechanical perception of flutter (Romo et al.,

2000, 1998), which is uniquely interesting because it proves that stimulating cortical

neurons is sufficient for sensory discrimination, and hence as a basis for a sensory

BMI. In rats, single 2 nC pulses of ICMS to the barrel cortex are detectable and

discriminable at 80%; longer repetitions of pulses increase efficacy (Butovas and

Schwarz, 2007).

Further proof that ICMS is salient and discriminable6 occurred with the demon-

stration of the Roborat in the lab of John Chapin. Here rats were trained to go

left, right, or straight based on radio-controlled ICMS to their barrel cortex (Talwar

et al., 2002), and were rewarded for proper behavior using microstimulation to the

medial forebrain bundle, a part of the limbic system that is strongly reinforcing for

behavior (Olds and Milner, 1954). Optical stimulation has proved capable of pro-

viding the same CS to mice (Huber et al., 2008). In the congenitally deaf and those

with cochlear, vestibulo-cochlear nerve damage, or neurofibramatosis (hence unable

6 but not necessarily equivalent to physiological somatosensation; the only true way to tell is to
try this in humans.
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to use a cochlear hearing implant) (O’Driscoll et al., 2011), microstimulation to the

inferior colliculus has been shown to permit speech understanding provided there are

additional lip-reading cues(Lim et al., 2009). To be discussed more later, micros-

timulation can be used to locate pyramidal tract neurons by antidromic stimulation

of the cervical spinal cord; this is often used in motor control studies to verify the

identity of recorded neurons (Evarts, 1968; Schmidt et al., 1978; Wyler et al., 1980a).

As mentioned above, the broad aspect of sensory information is it’s ability to

modify or inform behavior. That’s quite general, though: sensory information can

also enable the brain to make inferences about the environment, or inferences about

the sate of the body; sensory information is usually reactive feedback to ongoing

motor commands, not a one-time CS. Within the Nicolelis laboratory, we’ve been

working on using ICMS to enable these more specific aspects of somatosensation.

In 2007 Nathan Fitzsimmons used different pattens of ICMS to cue left/right food

pellet reaching in owl monkeys, proving when all other things were controlled (charge

delivery, frequency, pulse duration), the cortex is capable of discriminating different

patterns of stimulation (Fitzsimmons et al., 2007); see also Appendix A.2. In this

experiment the owl monkeys did not immediately generalize their previous extensive

vibrotactile cuing training, suggesting that ICMS either not equivalent to flutter as

in (Deco et al., 2009), or area 3b of somatosensory cortex works differently than area

1. Alternately, owl monkeys could just be less intelligent.

Subsequent work by Joseph O’Doherty showed that ICMS cuing could be suc-

cessfully incorporated into a closed-loop BMI. Indeed, ICMS learning was more rapid

than initial tactile learning in one monkey; this might not be surprising as the regions

targeted by ICMS mapped to the digits and palm of the hand, so the rhesus monkey

could generalize previous mechanical vibration training. Despite what Doty (1969)

reported, ICMS to posterior parietal region (PP) was ineffective, or at least much

less effective than S1. See also Appendix A.4.
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Yet this was still cuing, and not an real sensation – a real sensation both in-

forms about properties of the world, and is often contingent on motor behavior. Dr.

O’Doherty showed this recently in a brain-machine-brain interface, or BMBI. In the

experimental task, the monkeys had to select one rewarded of three targets by artifi-

cial texture, provided by ICMS. By interleaving 50 ms period of stimulation with 50

ms periods of recording, the BMBI could both use a Kalman filter to decode the mo-

tor commands and deliver ICMS sensory information. Characteristics of exploration

behavior were present in both hand- and brain-control sessions, suggesting that the

prosthetic was being used in a familiar, closed sensorimotor loop (O’Doherty et al.,

2011b). Pushing the field further, O’Doherty most recently showed that different

variances of ICMS could be discriminated by a monkey, suggesting that the commu-

nications channel afforded by ICMS goes beyond amplitude and frequency into the

timing of individual pulses. (O’Doherty et al., 2012).

To review, brain stimulation, and in particular ICMS, has been used for a host

of purposes, including:

• Determining the function of brain structures in both humans and animals.

• Motivating experimental animals.

• Probing the mechanisms of learning.

• Providing information to the CNS in the form of conditioned stimuli (CS).

• Providing information in the form of artificial sensation for visual, auditory, or

motor neuroprostheses.

• Antidromic activation of projecting fibers.

• Treating Parkinson’s disease & essential tremor.
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1.3 Recording

The second part of my work was focused on the opposite direction of communication:

recording. The history of neural recording has been nearly as long as that of stimu-

lation, and possibly even more broad; I will focus on the historical detail relevant to

this thesis.

The need for a many-channel recording system is necessitated and contingent

upon having a number of recordings sites; the desire to fabricate many-channel mi-

crowire arrays (MWAs) is circularly dependent on being able to record from them,

both possibilities that have opened relatively recently (Nicolelis and Ribeiro, 2002).

Hence the history of MWAs and recording systems have been tightly linked.

For the first 70-odd years of electrophysiology, almost all recording was done with

one or a few electrodes, for which individual tube amplifiers sufficed (Gesteland et al.,

1959). Original electrodes were simply short sections of fine wire, often varnished for

insulation (Fritsch and Hitzig, 2009). These and present macro-electrodes, such as

those used to deliver DBS currents, are both simpler to make and more reliable due

to the much larger area, so there has been less technological focus and refinement on

them.

The first microelectrodes were constructed by heating fine borosilicate glass tub-

ing in the middle and pulling it to a fine tip. These glass pipettes have tips around

1 µm in diameter offered a resistive connection to the electrolyte and hence a good

means for intracellular recording. They remain in extensive use, but their ą 10M,Ω

resistance plus 10 pF parasitic capacitance strongly filters recordings above 1.5 kHz,

making extracellular action potentials disappear into background noise. Metal probes

have a largely capacitive connection to saline due to the electrode-electrolyte inter-

face, hence their impedance decreases with frequency, and are ideally suited for

recording extracellular action potentials (Gesteland et al., 1959).
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In the 1950’s Hubel was of the first to begin using fine varnished microelectrodes;

some of his later success with Torsten Wiesel (e.g.(Hubel and Wiesel, 1963)) is due

to their ability to record high-quality extracellular action potentials from awake, be-

having animals. Their electrodes were made of tungsten, the second stiffest metallic

element (steel has a tendency to fracture near very fine tips), and electropolished to

a fine point. These electrodes are then coated with a thin layer of lacquer, and «5

µm of their tip exposed to yield a recording site with an impedance of 500 kΩ - 10

MΩ at 5kHz. (Hubel, 1957). A stiffer glass-insulated improvement upon this type of

electrode using tungsten (Collias and Manuelidis, 1957) or platinum (Guld, 1964) is

reliable and has been in continuous application since its invention.

Around the same time, John Cunningham Lilly began developing the first true

microwire array, albeit using micrpopettes that could slide freely in their housing so

as to rest lightly and non-invasively on the pial surface. Twenty-five micropipettes

were arrayed on a 2 mm grid, each with a tip opening of 100 µm, and were filled

by capillary action to connect to Ag/AgCl electrodes. These electrodes were fed to

a bank of vacuum-tube amplifiers, which notably employed common-mode rejection

(Nicolelis, 2011), fed in turn to a series of glow tubes that would dim with positive

electrode potential. At the time there were only physical means of recording (paper

and film), so Lilly used a high-speed camera to photograph these glow tubes during

his recordings. The resulting 3500 feet of film was nearly impossible to analyze in an

age with only a few computers (Lilly, 1950). Later work mentions implanting 610

channels over 19 cm2 of a monkey’s cortex, and though he was only able to record

from 25 at one time, he was able to observe in the thousands of feet of data different

speeds of evoked potentials in the high-resolution electrocorticogram (ECoG) and

sharp delineations between e.g. arm and leg representation in motor cortex 7.

7 Lilly summarized the problems of MWA recording quite astutely: “One of the large difficulties in
correlating structure, behavior, and CNS activity is the spatial problem of getting enough electrodes,
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The next advancement of MWA technology was borrowed, like all good advance-

ments. Kensall Wise used silicon lithography techniques to make SiO2 coated gold

electrodes with 2 µm fine, sharp points. However, the recording site could not be

more than 50 µm from the 100 µm thick supporting silicon substrate, hence could

only record superficially (Wise et al., 1970). Still, the promise of integrating elec-

trodes and amplifiers on the same silicon substrate was realized early. A few years

later PCB lithography was used to make a planar microelectode array (MEA) for

recording from cultured heart cells (Thomas et al., 1972), a technique which is con-

tinued in modern slice recording.

As Lilly realized (and avoided by recording from the pial surface), microelectrode

arrays should be as fine as possible to minimize damage to the tissue, but still need to

be rigid enough to penetrate the pia. This is necessary as not only is the pia difficult

to dissect out, but it contains many of the capillaries that supply the cortical surface.

One obvious solution is to glue electrodes together into a more rigid bundle, an idea

which led to the “sweet” electrode. In this scheme, 7 or more 25 µm teflon-coated

Pt-Ir wires are glued to a connector with colloidal silver solder, inserted through 26

gauge hypodermic tubing, twisted together, and bunched with saliva. Then they are

coated with dextrose melted at 148 ˝C, desiccated, and inserted into the rat brain,

where extracellular spikes appear within a few days and last 2-3 months. These

electrodes have a 1 kHz impedance of « 500kΩ (Chorover and DeLuca, 1972). Much

of this technique has been copied in our lab and others, notably the silver epoxy, but

not the saliva (presumably the 148 ˝C sterilized it, but the proteins likely make it

antigenic). This technique has been further expanded upon and refined for floating

arrays (Westby and Wang, 1997).

and small enough electrodes, in there with minimal injury. Still another problem is getting enough
samples from each electrode per unit time, over a long enough time, to see what goes on during
conditioning or learning [...] As for the problem of the investigator’s absorbing the data – if he has
adequate recording techniques, he has a lot of time to work on a very short recorded part of a given
monkey’s life.”
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Shortly thereafter Salcman and colleagues attacked the MWA design problem

“rationally”. Using again teflon-coated 25µm Pt-Ir (90%/10%) wires, stiffened and

insulated by heat fusing with a glass micropipette and backfilled with cyanoacrylate,

they were able to record the same apparent neuron for over 90 days (Salcman and

Bak, 1973). To better understand the task of extracellular recording, they then

developed an analytical mechanical model of this electrode in the cortex as subjected

to accelerations from head movement and shear stress from connection through a

wire, and determined that their tethering through a 25µm insulated gold wire should

result in 10µm instantaneous movement of the electrode tip through the cortex in

response to a 1 mm surface displacement, likely causing 2µm passage through tissue

(Goldstein and Salcman, 1973). This movement is almost acceptable for extracellular

recording, as the gradient for extracellular AP recording is « 7.5µv{µm, meaning

movements of a few µm can change spike shape. Larger movements can destroy

recording quality: a separable cell with SNR of 3:1 will disappear into the background

hash with an electrode movement of 15µm or more8 (Salcman and Bak, 1973).

Later electrodes by Salcman removed the glass micropipette insulator in favor

of a pure 25µm iridium electrically sharpened, gold-coated electrode attached via

microwelding to a 25µm gold lead wire. Pure iridium, with a Young’s modulus

of 521 GPa, is stiffer than tungsten with (406 GPa), hence Ir wires can be made

the thinnest and least invasive of any wire MWA9. With the dura dissected away,

penetrating the pia with a electrosharpened wire requires 50-200 µg; 2mm of 25µm

Ir wire has a buckling strength of «900 µg 10. The penetrating microwire is welded

8 High-quality single tungsten wire recording contests this assertion, as others have been able to
record the same spike over 50 µm of vertical penetration, and very large (Betz?) cells for 0.6 mm
(Vibert and Costa, 1979)

9 Platinum wires are usually alloyed with iridium to make them stiff enough to penetrate.

10 For reference: if an electrode can penetrate the skin of a reasonably fresh red grape, it can
penetrate the pia mater of rhesus monkeys; if it can penetrate canned pineapple against the grain,
it is likely too thick (personal communication, Anonymous, at SfN)
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Figure 1.2: Salcman’s floating microwire electrodes.

to an ultraflexibe gold tether, and this joint encased in a ball of epoxy which later

serves and a handle for insertion – see figure 1.3. The whole device is then insulated

with vacuum deposited parylene C, pinhole-free with a dielectric strength of 700

V/µm (Salcman and Bak, 1976). Each of these electrodes are individually inserted,

which allows the surgeon to avoid vasculature but does not permit large numbers of

implantations. Note also that, despite the high levels of expertise and technology,

recording quality on these intial electrodes declined within 40-50 days, possibly due to

organic polarization of the iridium-electrolyte interface which lead to a concomitant

decline in electrode impedance. Later versions apparently had much better longevity

of 37 months, as desired; these were of the first electrodes to be explicitly targeted

for neuroprosthetic research (Schmidt, 1980).

As Salcman’s individually floating arrays offered and improvement in longevity,
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but their construction is quite complicated, and without commercialization they were

not used again (to the best of my knowledge). This seems to be a common theme

in neuroengineering: researchers may create substantially advanced technology, but

unless it is dramatically better in quality or simplicity than existing technology, or

goes into commercial production, the simplest effective technology remains. For

example, Verloop and Holsheimer (1984) describe a simple MWA formed from wires

stretched parallel in a jig and epoxied together or (Williams et al., 1999) which is

highly copied and commercially available from Tucker-Davis technologies.

The next advancement came from MIT, where Kuperstein and Whittington

demonstrated a MWA fabricated on a thin sliver of molybdenum foil useful for both

high-density, precise localization of recorded neurons (microelectrodes diverge a bit

when pushed into the cortex, so precise location in an animal is difficult). This work

and others proved the utility of such lithographically patterned MWAs, leading to

Khalil Najafi and Kensall Wise to fabricate the first “Michigan” probe using a deep

boron diffusion layer to protect silicon from back-etching, thereby allowing chemical

etchants to thin relatively thick silicon wafers into a precisely defined needle-like

probe. This critical etching step allowed the silicon probe to be «15 µm thick (Na-

jafi et al., 1985), solving the earlier beam problem, and permitting silicon electrodes

and electronics to be fabricated in the same step (BeMent et al., 1986), including

with amplifiers and multiplexers (Najafi and Wise, 1986) for reducing microphonic

noise (Csicsvari et al., 2003), and later assembled into 64-channel three-dimensional

structures (Hoogerwerf and Wise, 1994). While crystaline silicon is generally brittle,

thin films of silicon are remarkably tough and flexible – about six times as strong

as bulk silicon, allowing the lead wires to be made of silicon too (Najafi and Hetke,

1990).

In the most common integrated circuit processing practice crystaline silicon wafers

are patterned with doped regions, insulators, and metal layers in a repeating pattern
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to make many identical chips; these chips are diced or separated from the wafer

using a special very fine-kerf diamond saw. Normann and colleagues realized that

this dicing saw, followed by an acid etch step (exactly as used to sharpen metal

microelectrodes) could be used to mechanically, rather than lithographically, create

a silicon microelectrode array. After initial semi-failed attempts using p-n-p junctions

to insulate the individual spikes of p-doped conductive silicon, they switched to frit

glass insulation using kerfs of the diamond dicing saw to separate electrodes, and the

modern “Utah” array was born (Jones et al., 1992) 11.

Initial tests of these arrays in cat S1, V1, and auditory cortex were less than

sanguine. Of 12 implanted Utah arrays, all but one showed some degree of fibrous

encapsulation, likely from invagination from either the dura or arachnoid. These

arrays are tethered using 25 µm polyester-insulated gold wire to limit the mechanical

coupling between the scull and brain (not only does the brain accelerated within the

cranial volume, but it swells and contracts on a diurnal cycle). The tether permits

the brain to eject the Utah array, which it did to completion in one array, leaving

the cortex below with no evidence of implantation or scarring. Two other arrays

were totally removed from the leptomeningeal space. Histology revealed that in

all implants the dura adhered strongly to the bone flap, and in turn the fibrous

encapsulation of the Utah array adhered to the dura: the implant was effectively

affixed to the scull, not tethered (Rousche and Normann, 1998).

Through an undisclosed “longitudinal development series” which included 39 ar-

ray implants in 18 monkeys, the quality of the Utah array was markedly improved.

By changing the insulation from silicon nitride or polymide to parylene-C and, per-

haps most critically, placing a layer of sterile Gore-Tex above the individual arrays

before replacing the dura, the electrode was not so thoroughly rejected. Recording

11 Additive, rather than subtractive, construction can also be used to create silicon electrodes.
Innovative new work shows that vapor-liquid-solid growth can fabricate electrodes as fine as 4 µm
(Kawano et al., 2010).
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quality persisted for at least 70% of the electrode arrays to 82, 172, and 154, and 569

days; one monkey reportedly could be recorded out to 1264 days (3.4 years) (Suner

et al., 2005).

Phillip Kennedy took an alternative approach to recording from neurons: rather

than inserting metal to get close to them, he use a bit of cat sciatic nerve to get

neurons to grow toward the electrodes (Kennedy, 1989). This bit of sciatic nerve was

placed inside a glass micropipette in which several fine gold wires were glued; the

nerve released neurotrophins, causing the neuropil (axons and dendrites, but no cell

bodies) to extend into the cone, leading to good and reliable recording approximately

6 months post implantation (Kennedy et al., 1992). The cone electrode has been

successfully used in clinical human BMIs, to be discussed below.

The final electrode technology worth mentioning is the oblique or inverted method

of implantation. Normally when recording from the cortex, electrodes are implanted

through the superficial layers into the deeper layers, as this is both easiest and

disrupts the minimum amount of tissue. An alternative, developed by Kruker and

colleagues, is to implant from the opposite direction, e.g. from the white matter.

Using very fine polymide-insulated 12.5 µm Ni-Cr-Al wire in rabbit and marmoset

V1 cortex, they were able to record stable action potentials for up to 711 days,

during which recording quality did not degrade. The authors surmise that the small

diameter of the wire and long length of free wire running through the brain provided

a sufficient degree of friction so that tissue does not move near the electrode tip

(Porada et al., 2000), thereby reducing mechanically stimulated immune response.

Later work proved that this method could be used to record from arrays of 64 channels

in ventral motor cortex of monkeys for 7 years, a point at which the primary failure

mode was the connectors, not the electrodes or insulation (Kruger et al., 2010).

Within the Nicolelis lab, there has been a continuous evolution of MWA tech-

nology and assembly technique. Prior my arrival at Duke, arrays were assembled
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by affixing individual straight segments of wire to small PCBs. These PCBs were

soldered directly to the headstage connector and could be arrayed vertically to form

a 2D array of 16 to 96 individual channels (Nicolelis et al., 2003). In lieu of Utah or

Michigan arrays, other labs have similar sensible construction techniques (Verloop

and Holsheimer, 1984) or (Williams et al., 1999). Gary Lehew’s arrays offer basi-

cally indefinite recording from owl monkeys and ą 4 year longevity in rhesus monkeys

(that is, clear SUA is recorded on many electrodes for at least 4 years, though the

identity of those cells may change over time); other labs have verified the longevity of

similarly constructed MWAs to 800 days (Liu et al., 2006). The most recent arrays,

as used in the experiments of Chapters 3 and 4, include 2 or 3 microwires per shaft

(65 µm and 40 µm or three 50 µm), and are moveable in groups of three or four

shafts.

1.3.1 Summary

The above review very roughly outlines the many and varied attempts at using arrays

of electrodes to record from the central nervous system. The net impression is that

many different technologies offer nearly equivalent levels of performance, which has

been verified in a controlled study (Ward et al., 2009). Microwire arrays to offer

slightly worse SNR than single electrode recordings (Kelly et al., 2007), but they

more than make up for this in high bandwidth simultaneous recordings across a

neural population (Friston, 2002). As improved signal quality would dramatically

simplify the recording system, future directions of this field will be presented in the

discussion.
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1.4 Recording Systems

1.4.1 Amplification

In comparison to the complex issues surrounding assembly, biocompatibility, and

longevity of electrodes, electrical recording of extracellular action potentials is not

inherently daunting. The needed bandwidth is not too high, and all that is required

is low input-referred noise (Gesteland et al., 1959). Amplifier passband should be

between 100 and 7.5 kHz, with the highpass to remove ten-times larger LFP, and

the lowpass to remove noise beyond the band in which spike energy is concentrated.

Electrodes have a thermal noise of E “ 0.1219
?
R ˆBµVrms, where B = bandwidth

in Hz and R = resistance in MΩ, which equates to 10 µV from a 1 MΩ electrode at

7.5 kHz bandwidth (Schmidt, 1984b). FET input op-amps have an equivalent noise

source resistance of 15 kΩ, so sufficient noise performance is not difficult to achieve

with commercially available integrated circuits.

Placing the amplifiers very close to the recording sites minimizes the capacitance

of the electrode leads; as the electrode-electrolyte tissue is a capacitor with a value of

0.2pf{µm2 (Robinson, 1968) electrodes have a typical capacitance of 5-20pf and any

load capacitance serves as a (degrading) voltage divider. Immediate pre-amplification

also reduces microphonic pickup due to wire movement. As a result, nearly all elec-

trophysiology setups place the initial amplifier or headstage as close to the recording

site as possible.

Spike sorting and data recording is a considerably more challenging task; origi-

nal sorting was done via custom analog window-comparators tuned for the cell un-

der study (Olds, 1967), or switched sequenced amplifiers; one particularly ingenious

method used photodetectors taped to the screen of an oscilloscope (Schmidt, 1984b).

The advent of the computer simplified the problem tremendously, and by the early

80’s the standard methods for spike sorting had been well established: template
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matching, PCA, spike amplitude, peak-to-peak amplitude, Fourier analysis, curve

fitting, spike area, and RMS value (Schmidt, 1984a). Given sufficient signal-to noise

on the neural traces, any of these methods will work well, but only a few parameters

are needed for adequate separation: maximum voltage, minimum voltage, and the

time between them (Vibert and Costa, 1979). Chapter 4 describes a system which

uses template sorting, chosen mainly because it maps well to the computational

resources of the hardware, and because it it most familiar to the end-users.

As mentioned, obtaining acceptable gain, passband, and input noise parameters

is not too difficult with discrete semiconductors or commercial off the shelf (COTS)

components (Obeid et al., 2004a). Miniature and integrated bioamplifiers, however,

face a number of challenges, including:

• Nulling electrode offsets. The electrode - electrolyte interface acts as a half-cell,

hence can be polarized to 1 V with as little as 10 nA. Hence amplifiers must

have zero DC gain. This is frequently accomplished by capacitively coupling

the amplifier input.

• Positioning highpass poles. Capacitively coupling the input provides a high-

pass, but given that only very small on-chip capacitors (0.001pf{µm2 (Obeid

et al., 2003)) can be made, the associated resistors must have very high re-

sistance. One clever solution is to use deep-ohmic PMOS transistors as high

value resistors (Mojarradi et al., 2003), or MOS-bipolar pseudoresistors (Har-

rison and Charles, 2003; Perelman and Ginosar, 2007), very long transistors

(Dabrowski et al., 2003), or even diodes forward-biased so that dV {dI effects a

high value resistor (Dorman et al., 1985). Larger capacitors can be realized by

nitride films (Dorman et al., 1985) or by exploiting the Miller effect (Dabrowski

et al., 2003).

• Low noise. PMOS transistors, which have lower 1/f (flicker) noise than their
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NMOS counterparts, are generally used here. To maximize transconductance

(gain) they are biased for weak inversion and made wide to further optimize

noise (Harrison and Charles, 2003). Cascode current sources can be used in the

rest of the amplifier, as these shunt their own current sources (Wattanapanitch

et al., 2007). An alternative approach is to use chopper-stabilization of the

amplifier (Dagtekin et al., 2001), which has the added benefit of electrode

offset rejection.

• Low power. A fundamental trade-off in amplifier design is that between power,

bandwidth, and noise, so much so that a metric, the noise efficiency factor

(NEF) is typically specified for a given design. In his thesis, Wattanapanitch

(2007) proposes a very low power bioamplifier with a NEF of 2.7, and further-

more cleverly permits reducing bias current for lower recording power when

background neural noise is high. It is also possible to vary bias current based

on required bandwidth (Mojarradi et al., 2003). Other work has NEFs of 1.8

(Holleman and Otis, 2007), 4 (Harrison and Charles, 2003), 10 (Mohseni and

Najafi, 2004), or greater (Obeid et al., 2003).

The recording system described in Chapter 4 uses a commercially available am-

plifier and multiplexer chip based on (Harrison and Charles, 2003), which feature a

low input-referred noise of 2.2 µ, Vrms
12. Many other lower-power designs exists, as

mentioned above, but in the interest of time, effort, and expertise custom amplifiers

were not investigated.

1.4.2 Integration

Research in the integration of electrodes, neural amplifiers, sorting, and telemetry

seems to be lead by Najafi, Wise, and colleagues. As mentioned above, placing

12 The research version of this amplifier seems to have much lower power (80 µ,W than the
commercially available chip (400µ,W {chan)
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Figure 1.3: Early recording system with amplifiers on the electrodes. From (Be-
Ment et al., 1986)

amplifiers as close as possible to the recording site has distinct advantages, which

led initial work to put enhancement-mode NMOS preamplifiers on a micromachined

silicon electrode (Najafi et al., 1985). Figure 1.3 shows examples of these silicon

electrodes with integrated circuitry. These amplifiers featured a gain of 100, a band-

width of 15 kHz, and recording of 10 sites through 3 leads via on-chip multiplexing

(Najafi and Wise, 1986). Later versions had an unfortunately high input-referred

noise of 15 µ, Vrms but consumed a modest 2.5 mW for 8 channels (Ji and Wise,

1992).

As early as 1995 these amplifiers were multiplexed, digitized, and telemetered

using an bidirectional inductive link (Akin et al., 1995). This system allowed trans-

dermal transmission of 2 digital channels of neural activity from a peripheral nerve

recorded via a 32 site silicon sieve electrode, within a 4 x 4 mm package consum-

ing 90 mW of power13 (Akin et al., 1998). The same group created a 1024 site

3D integrated recording system using Michigan-style planar silicon probes vertically

mounted to a carrier board and spike sorting DSP (Bai and Wise, 2001; Wise et al.,

2004). The system, shown in Figure 1.4, can digitally record, stimulate, and teleme-

13 Given the very advanced level of this work, and its transparent utility to others, I wonder what
has happened to the technology – it was at least 10 years before others.
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Figure 1.4: .

1024 channel silicon integrated recording system. Vertical silicon electrodes &
preamplifiers are mounted by electroplating nickel between opposed contacts on the

base and vertical silicon. From (Wise et al., 2004)

ter from any 128 of the 1024 recording sites. Spike sorting here is simple thresholding

with 2 channels broadband transmission per 64 electrode sites (Sodagar et al., 2006);

spikes are compressed to 18 bits of address and voltage (Sodagar et al., 2007). Later

work extends recording to 256 simultaneous channels (Olsson and Wise, 2005) using

parameterized spike sorting inspired by (Vibert and Costa, 1979) at only 5.4 mW.

To my limited knowledge, this system has not been used in a monkey, but similar

devices have provided stable recording for over a year in rats.

Their most recent work is frankly far beyond my own modest efforts. In a single

1.4 x 1.55 cm package consuming 14.4 mW they can amplify, sort (detect threshold

crossings and maximum amplitude), and telemeter 64 channels (Sodagar et al., 2009).

These systems have had limited adoption, however, due to the expensive mixed

MEMS / CMOS fabrication steps required, and the relatively low yield of functioning

chips (Michel Maharbiz, personal communication).

Many other groups have been working on wireless recording systems; a literature

review seems to be an enormous amount of duplicated effort. At Duke Obeid et

al. (2004b) have demonstrated a wireless recording of 12 broadband system using

802.11 (WiFi) using 4 W of power; later work consumes 2.3 W (Parthasarathy et al.,

2006) or was extended to include signal processing for BMI applications (Darmanjian

et al., 2005). Integrated amplifiers (Obeid et al., 2003) and a discrete analog front

end (Obeid et al., 2004a) have been developed here, as well as a 96-channel FPGA-
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based wireless recording system (Rizk et al., 2007) that is fully implantable (Rizk

et al., 2009). This last work is highly similar to that presented in Chapter 4, except

the analog section of Rizk’s design is much higher power (300 mW), the outgoing

bandwidth is lower (1 Mbps), sorting is not done on the transceiver, and no digital

filtering is performed on the raw signal traces.

Other innovative approaches include using optical means to deliver power via

GaAs/AlGaAs photodiodes (Song et al., 2005) and transmit data (Song et al., 2009);

saving neural data to compact flash (Linderman et al., 2006; Santhanam et al., 2007);

making the recordings system light enough to mount on homing pigeons (Vyssotski

et al., 2006); using completely passive sensors based on RF backscatter (backscatter

is used for e.g. airport security scanners) (Schwerdt et al., 2011; Towe, 2007); ultra

low-cost systems (Ativanichayaphong et al., 2008; Rolston et al., 2009a); mounting a

custom spike sorting & radio power/data system on the back of a Utah array (Harri-

son et al., 2009; Kim et al., 2009); 1000 channel active surface recording (Maschietto

et al., 2009); and time-division multiplexed encoding neural potentials into a video

stream for wireless transmission (Szuts et al., 2011). Ultra wide-band radios are

presently quite popular due to FCC regulations and the need for high bandwidths in

wireless systems without spike sorting (Chae et al., 2009; Fan et al., 2011; Miranda

et al., 2010).

1.5 BMI

The idea of a brain-machine interface is possibly as old as neuroscience, or at least as

old as science-fiction. People have wanted to control things directly with their minds,

circumventing the musculoskeletal system and presumably the attendant fatigue14

and power limitations. That desire is elevated to a proper need in the case of ampu-

tation and paralysis, whence the normal end-effector of volition must be replaced by

14 This despite the fact that fatigue may largely be centrally mediated (Hilty et al., 2011)
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something else. The natural choice is closest point in the broken signal chain: either

the mixed peripheral nerves exiting the spinal cord, the spinal cord itself, pyramidal

tract neurons in the motor cortex, or other CNS targets. This document will only

deal with signal sources within the CNS, primarily within motor cortices.

Before controlling something with your neurons it must be determined if the firing

of individual neurons themselves could be controlled. Olds was the first to demon-

strate this form of operant conditioning of individual neurons chronically recorded

from rats. Cells were recorded from the pontine nucleus and hippocampus; the rat

was given food or self-reinforcing ICMS to the hypothalamus whenever the neuron

bursted for 250 ms above a normal spontaneous range, contingent on a light trigger

signal. The rat was able to operantly condition FR changes in all neurons recorded.

However the threshold for bursting would need to vary over the course of an exper-

iment, as the FR for these neurons would vary by a factor of 2-5 over a period of

several hours, and exhibited sinusoidal oscillations on the order of 10-20 minutes,

depending on the structure recorded (Olds, 1967).

Earlier work by Basmajian showed that this was unsurprisingly true in people

as well, here via recording intramuscular EMGs. A motor unit, (the group contain-

ing an anterior horn cell in the spinal cord, its axon, and all the muscle fibers on

which the terminal branches of the axon end) can be discriminated much like cortical

cells by extracellular fine electrodes inserted through the skin (in this case, 25 µm

Karma alloy, NiCrAl, normally used in strain gauges). Three to five units from one

electrode could be voluntarily recruited by the patient after a half-hour period of

training, and through simple feedback (an oscilloscope and speaker), each could be

controlled independently. The author was impressed by how quickly and reliably

learning occurred: “The controls (are) learned so quickly, are so exquisite, are so

well retained after the feedbacks are eliminated that one must not dismiss them as

tricks” (Basmajian, 1963).
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Figure 1.5: Setup used by Basmajian for EMG biofeeback studies. From (Basma-
jian, 1963).

These early results have pivotal importance on the nascent field of brain-machine

interfaces, as it proved that individual control of motor units – hence likely the

pyramidal tract neurons that activate them – is both possible and precise. Eberhard

Fetz proved that this was true by training monkeys to increase the firing rate of

precentral cortical neurons recorded in the classical fashion, through a single acute

electrode penetration. With audio and visual feedback (like Basmajian) the monkeys

quickly (mean 6.5 minutes) learned to increase the firing rates of 65% the recorded

neurons, and these increases usually involved movement such as elbow flexion or

wrist pronation/supination (Fetz, 1969). This results were unlikely to be purely the

result of sensory feedback, as shown by extinction trials, and the presence of specific

movements suggests that it is not an overall result of global attentional or motivation.

This last point was verified using bilateral electrodes (Wyler et al., 1980c).

Fetz subsequently showed that these operant responses could be dissociated from

the habitual or normal associated muscle contraction (Fetz and Finocchio, 1971,

1972), further suggesting that individual precentral units are independent channels
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of efferent information. A more extensive study showed that when a single electrode

was able to record two or more units at the same time, each could be independently

conditioned for high or low firing rate. As would be expected, these neighboring cells

usually (but not always) exhibited correlated firing rate changes (Fetz and Baker,

1973). Later work found that 80% of simultaneously recorded neurons did not show

covarying firing rates, consistent with Lemon and Porter’s finding that neighboring

cells respond to widely separated peripheral fields (Lemon et al., 1976); even yet fully

two thirds of them show tight 1ms synchrony(Wyler, 1985). The discoveries led to

what was arguably the first cortically-driven BMI (Humphrey et al., 1970), in which

operant responses from small groups of motor cortex units were used for real-time

prediction of simple arm movements; despite the stated neuroprosthetic purpose, it

did not garner nearly the publicity of later BMIs.

Around the same time Wyler, under the tutelage of Fetz, hypothesized that

epilepsy might be possible to control through biofeedback and operant conditioning.

In monkeys in which precentral epilepsy was induced by placing alumina on the

cortical surface, the researchers were able to record three classes of neurons based on

the temporal structure of their epileptiform bursts and presence of ISIs shorter than

10ms (precentral neurons rarely exhibit ISIs less than 10ms except during vigorous

movement or sleep). Cells with highly structured, stereotyped burst could not be

conditioned; less stereotypical bursts could be conditioned, though not to repress

bursting (Wyler and Fetz, 1974; Wyler et al., 1975).

The work let Wyler to ask if ISIs themselves could be operantly conditioned; this

reflects, albeit loosely, on the idea that both the time and the rate of individual spikes

matters (Rieke et al., 1999). Though to the best of my knowledge this has not been

duplicated, they were unable to train monkeys to control ISIs (Wyler and Robbins,

1979); indeed, they discovered that the ISI distribution or PTNs was likely to be bi-

or tri-modal during movements unrelated to the neuron’s tuning, but as the monkey
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gained volitional control over the cell, the distribution became more gaussian. With

some neurons, variance of this gaussian could be controlled by the monkey, but only

to a point. As the few cases of control were associated with apparent isometric con-

traction of the associated muscles, (as observed by all studies of operant control in

motor cortex up to this point), next they sectioned the dorsal cervical spinal cord.

This markedly decreased the fidelity of volitional control. When only contralateral

C5-7 ventral roots were sectioned, PTNs could no longer be statistically controlled,

leading the authors to conclude that high fidelity control of FR in precentral neurons

requires afferent feedback from the spinal cord, and usually peripheral movements

(Wyler et al., 1980b). As a further control, they then eliminated audio and visual

feedback; monkeys were able to control PTN FR independent of sensory feedback,

consistent with the essential feedback coming from the spinal cord and periphery

(Wyler and Robbins, 1980). The inability to train ISIs is also consistent with feed-

back from the periphery, as individual ISIs are destroyed during the conversion of

spikes to force to spikes; indeed, even if the CNS computes via precise spike timing

volitional control of ISI PTNs is useless, as muscles (and the skeletal system) are

agnostic to the feature.

A final study by Wyler further buttressed the hypothesis of spinal cord control:

by implanting a stimulating electrode in the pyramids at the level of the brainstem

he was able to measure antidromic latency on the recorded neurons. Surprisingly,

slow PTNs, those with latency ą 2 ms, were nearly all well controlled in the operant-

conditioning task; fast (ă 2 ms, 1.2ms mean latency, presumptive Betz cells) had a

more highly variable firing rate and ISI, and were less well controlled (Wyler et al.,

1980a). While this experiment is highly suggestive, it needs to be verified in a more

typical FR-only operant conditioning task.

Such a study was conducted by Schmidt and colleagues using the floating chronic

iridium microelectrodes mentioned earlier (Carmena et al., 2005; Salcman and Bak,
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1973, 1976). During recordings spanning two years, they found that 77% of single

units and 65% of multiunits could be brought under volitional control by the mon-

keys. As they were only recording one neuron, this was a one dimensional BMI, with

a row of 8 lights and 8 target annular rings serving as the target-acquisition task.

The cursor in this case was controlled by the firing rate of individual neurons, using

an analog threshold and RC filter. Systematic variance of the target hold time and

smoothing τ led to a peak bitrate (in the case of 4 targets, 2* targets/sec; 8 targets:

3* targets/sec, assuming 100% success) of 3.85 bits/sec, which nearly equals the 4.29

bits/sec that the monkeys achieved when using a manipulandum (Schmidt et al.,

1978). For comparison, a human can convey «2.7 bits/sec using single-channel sur-

face EMG; a trained monkey can convey 3 bits/sec (Schmidt, 1980). As before, they

found successful conditioning was always associated with specific repeatable limb

movements, e.g. finger and shoulder movements, frequently isometric against the

primate chair. An antidromic pyramidal tract electrode was implanted in one of the

three monkeys used, and latencies were 1.2-1.3 ms for conditioned units; direct com-

parison with Wyler’s results are difficult, but a positive result is generally stronger

than a negative: fine control of M1 PTNs is possible, even easy for well-trained mon-

keys. This led the authors to conclude that these signals were eminently suitable for

neuroprosthetics (Schmidt, 1980) with some ensuing media hysteria (Marbach et al.,

1982; O’Neill, 1980).

To the best of my knowledge, this initial work in BMIs under the heading of

operant conditioning was left fallow until 1999, when Miguel Nicolelis, John Chapin15,

Karen Moxon and colleagues at SUNY Downstate demonstrated the first modern

BMI. Here neurons recorded using microwire arrays in M1 and ventrolateral thalamus

(VL, has major afferents to motor cortex) were used to control a one DOF robot arm

that could retrieve droplets of water. To convert the firing of up to 46 neurons to

15 also known as my boss and former boss.
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Figure 1.6: Illustration of precise control achieved by Schmidt & his monkeys.
From (1978).

Figure 1.7: Recording setup used by Schmidt. From (Schmidt, 1980).

the one dimensional control signal, recurrent artificial neural networks and linear

methods regressed ensemble activity to recorded forelimb movements the rat made

while manually controlling the robot (Chapin et al., 1999). This bit of supervised

learning16 was a large departure from operant conditioning in that much of the

learning was now done by the computer. This was as much a technological limitation

as scientific, for up until this point neither the microwire (Nicolelis et al., 1997),

electronic recording, or computer technology did not exist for these experiments.

Shortly thereafter Wessberg et.al (2000) showed that the 1D BMI task in rats

could be extended to full 3D hand endpoint predictions in owl monkeys. Super-

16 Supervised in the sense that both the input and output of a transform is known, so the task is
to infer the transform.
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vised learning via a Wiener filter or artificial neural network were used in real-time

to reconstruct the path of the monkey’s arm17 from 50-100 neurons, which then

commanded the trajectories of local and remote haptic robots. Most interestingly,

the reconstructions were accurate despite the facts that the variance on the mon-

key’s reaching movements was quite high, the movements were often ballistic, and

movements were not overtrained & stereotyped – thereby proving that the decoding

generalized to normal arm trajectories (Wessberg et al., 2000).

Around the same time Phillip Kennedy reported on his initial work using the cone

electrode in ALS (Kennedy and Bakay, 1998) and brainstem stroke locked-in patients.

The electrodes worked as in monkeys and two patients were able to control a one-bit

(on-off) or 1D + select BMI for typing on a computer screen. Kennedy found that

pure increases of firing rate within the recorded neurites were more effective than

bidirectional modulations, as would be expected from the motor system (muscles

exert force in one direction), hence the BMI was not only one dimensional but one

directional. To permit typing the keyboard cursor simply wrapped when it got to

the right of the screen (Kennedy et al., 2000). One patient was able to dissociate

neurite activity from eyebrow EMG, as Fetz did, but this begs the question of why

non-invasive surface EMG was not used if it could provide the same information18.

Work with these patients must have been slow, as they were sick and had many

complications (ulcers, peripheral neuropathy)(Chapin and Moxon, 2000); the same

issues came up in our work with PD patients.

Later work with the cone electrode in human patients showed promise for decod-

ing speech. As detailed in an recent article (Bartels et al., 2008), the cone electrodes

17 Using shape-tape – loops of fiber optic that measure bending by light loss around curves (another
enabling technology).

18 The same issue holds for EEG BMI studies, where adaptive noise cancellation often must be
used to remove the order-of-magnitude larger head EMG signals (Schalk et al., 2000). If the EMG
signals are so large, why not just use them? Furthermore, EEG control peaks at around 0.25
bits/sec (Blankertz et al., 2003), an order of magnitude lower than surface EMG on one muscle
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were implanted rather deep (5-6mm) into the speech motor cortex of patients, and

telemetered with a bipolar, inductively powered, FM radios. The received broad-

band signals were sorted into 56 spike clusters on two channels19 and fed through a

Kalman filter to produce two control axes. As with the rats at SUNY, this was su-

pervised learning – Kennedy asked the patients to imagine making a series of simple

vowel sounds that can be characterized by trajectories through a 2D format space,

from which he trained the Kalman filter to produce the corresponding sounds at will

(Guenther et al., 2009). Normal speech contains plosives and fricatives in addition

to the formants of vowels, but still this is a promising start.

Returning to monkeys, Serruya et. al. (2002) showed that monkeys could be

rapidly trained to use a relative few (7-30) motor cortex neurons to directly control

a 2D computer cursor under visual feedback; this result was extended to decoding

movement direction (classification) using ML methods as well as continuous linear

decoders on as little as 1 minute of data (Serruya et al., 2003). Taylor et. al.

(2002) extended this result to three spatial dimensions with a monkey reaching to

8 spatial targets arranged at the corners of a cube. The population vector (PV)

algorithm was used to decode movements in this experiment, followed by an ad-

hoc but apparently effective “co-adaptive” algorithm. This employed what were

effectively cross-validation and semi-supervised methods to update individual tuning

vectors (Helms Tillery et al., 2003). Work by our lab has shown the PV method

to be inferior to other methods, like the Kalman filter (Li et al., 2009), and indeed

Taylor et al reflected that raw PV without adaptive update yielded poor predictions.

Jose Carmena and colleagues in the Nicolelis lab shortly thereafter published

work in a realtime 3D reaching and grasping BMI (Carmena et al., 2003). In these

expiermiments, monkeys first learned to control a video game in which cursor position

19 This seems excessive, as we normally sort 4 units maximum per channel; Kennedy’s justification
was that the Kalman filter with a ridge-regression normalization step will correctly merge or reject
clusters despite excessive sorting.
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was controlled by a 2D joystick, and cursor size was controlled by grip force; once

the monkeys mastered the task, a Wiener filter was trained on the data and used to

directly control the video game. Ultimately the joystick itself was removed, and the

monkeys had to make reaching movements with only neural activity. In comparison

to previous work by Schmidt and Wyler, after a while monkeys ceased use their

muscles at all, as EMG recordings were silent. Carmena also looked at prediction

quality by area, and found a mixed but distributed coding of the task information

between M1, PMd, PP, and S1, and SMA. These neurons were analyzed for tuning

changes between pole and brain control, and remarkably this too was modulated

by area. In brain control it was found that most neurons progressively grouped

around the same preferred direction, a result I find quite interesting20. Carmena

et al (2003) showed that when control signals were passed through a robot, the

monkeys were able to compensate for the resultant nonlinearities and delays, and

could control it as a prosthesis would be controlled. This control was stabilized

through visual feedback and distributed coding, as though the correlation between

the firing of individual neurons and movement parameters was nonstationary over

30 minute periods, aggregate predictions were stable (Carmena et al., 2005).

The next major advance was built on the observation that the parietal reach

region (PRR) of the posterior parietal cortex (PPC) encodes reaches in visual coor-

dinates. Musallam et. al. (2004) recorded the medial intraparietal section of PRR,

and were able to rapidly – in 200 to 1100 ms – decode the intended discrete reach

of a monkey from a small set of neurons (ă“ 16). The decoder in this case was an

adaptively updated database indexed by wavelet-transformed firing rates.

Using a similar probabalistic model, Santhanam et. al. (2006) were able to

20 If all neurons are tuned to approximately the same direction, then how is the orthogonal direction
controlled? One must be careful in making extrapolations from this, as the cursor movement is
controlled by the firing of the neurons themselves, and so regressing firing rate of one neuron to
the aggregate firing of many neurons may just be extracting the first principal component of the
ensemble activity.
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quickly decode the intended reach target from 96 microwires recorded in PMd. The

peak sustained channel rate in these experiments was 6.5 bits per second, or approx-

imately 15 words per minute, which is 68% higher than reported by Schmidt (1978)

nearly thirty years earlier – despite the fact that they had over 100 times as many

neurons. This strongly nonlinear scaling (if all neurons were independent, then 100

neurons should convey 385 bits/second) is, I think, more a limitation of feedback

and training than of the motor system itself.

Donoghue and colleagues later showed a 2D BMI in a human rendered teraplegic

by spinal cord stroke. Using 96 channels from a Utah array chronically implanted

in hand/arm precentral gyrus, the BMI user was able to perform reasonably reli-

able pursuit tracking and center-out tasks, as well as typing and generally using a

computer (Hatsopoulos et al., 2005; Hochberg et al., 2006). This study served as

conclusive proof that motor cortex was an active and functional source of volitional

signals in paralyzed humans, despite Wyler’s observations that the quality of control

markedly decreased without the ventral horn (Wyler et al., 1980b). Despite the work,

EMG and eye saccade controls remain non-invasive and far more reliable (Birbaumer

and Cohen, 2007).

A swell of interest and related work followed (Lebedev and Nicolelis, 2006) (see

also Appendix A.5), some of it innovative and other more capitalizing on the sci-fi

public appeal of BMIs. Most studies fit within the category of incremental improve-

ments in the quality or bandwidth of brain-computer communication, though some

surprising results can be found.

As described in the first section of the introduction, electrodes are a common

bottleneck in electrophysiological systems, particuarly BMIs. Mehring et. al. (2003)

showed that LFPs – which are much more stable than SUA against electrode changes,

immune response, or micromotion – are equal to single-unit recordings in terms of

predictive capability. Wood et. al. (2004) addressed the problem of stability a
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different way, by putting the sorting of SUA within the optimization step. They

show a modest increase – 14% – with optimized machine sorting of cells versus

human sorting. Another alternative is to simply not sort the data, and instead

include all threshold crossings on a given electrode channel into one unit (Won and

Wolf, 2004). This does not seem to be a well-motivated idea, as described before,

for neurons recorded from the same channel can have different tunings.

A second limiting step in BMIs is the decoder, and efforts to improve noisy predic-

tions have investigated many supervised, semi-supervised, and unsupervised learning

techniques. As in the original BMI work within the Chapin lab, Single recurrent net-

works have been used to effectively predict multiple kinematic parameters (Sanchez

et al., 2005). This study used the data from (Carmena et al., 2003) and showed

that a large proportion of the output variance is predicted by a few neurons, a result

that remains disputed (Narayanan et al., 2005). Probabilistic methods, like particle

filters, have been shown to be 3-5 times better than optimal linear control, and 7-10

times better than population vector (Brockwell et al., 2004). Within the Nicolelis

lab, we have developed a more principled and computationally efficient method for

BMI predictions using an unscented Kalman Filter (Li et al., 2009) and see also Ap-

pendix A.3; ’unscented’ in this case refers to accurate modeling of nonlinear tuning

and state-transition functions. Other nonlinear techniques within the literature in-

clude support vector machines (Byron and Jennie, 2010), permitting an assessment

of which neurons the brain was changing to support learning, or spiking neural net

decoders (Dethier et al., 2011). Yet other BMI researchers have focused not in im-

proving the quality of control, but rather the quantity of data required to train it,

by using immediate, bootstrapping visual feedback (Wahnoun et al., 2004), or by

eliminating distracting ’noise’ units (Wahnoun et al., 2006).

The third region subjected to engineering improvement is the robot or output of

the BMI. As BMI signals are to this date still quite noisy, it makes sense to embed
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object-interaction intelligence within the robot. This falls under ’shared control’, an

idea Hyun Kim investigated in the Nicolelis lab; in his experiment a haptic robot

with gripper was partially controlled by the brain, and partially controlled by sensors

in the robot arm. The robot emulated the “infant palmar grasp reflex”, helping the

robot arm to pick and release objects (Kim et al., 2006). The Schwartz laboratory

used a similar form of shared control in an experiment where a (presumably very well-

motivated) monkey had to learn to control a robotic arm for feeding itself. Rather

than controlling the joint angles directly (which would be very non-intuitive, as they

did not use an anamorphic arm), a population vector decoder was used to direct

the robot endpoint, and the food gripper automatically opened / closed based on

position (Velliste et al., 2008).

As part of his doctoral research, Hyun Kim addressed another limitation of

robotic output: real-world tasks require a mixture of stiff, position-based control

(e.g. writing on paper) and pliant, force-based control (handling an egg); up until

this point, all BMIs have been one or the other but not both. His clever solution was

to emulate the actual arm through a musculoskeletal model in which the simulated

muscles were directly controlled. The experiment showed that a cortical BMI could

control both impedance and kinematics simultaneously (Kim et al., 2007); see also

Appendix A.1. This work has been elaborated and verified in another laboratory

(Fagg et al., 2007).

Far better than a robot or a musculoskeletal model would be to use the patient’s

arms directly. This is possible through functional electrical stimulation (FES), where

muscles are directly electrically stimulated, with control of the current through a

simplified BMI. The Fetz laboratory has demonstrated a FES BMI in a simple wrist

flexion / extension task (Moritz et al., 2008); as in other BMI studies, this reported

that control was robust irrespective if or how the recorded neuron was previously

associated with movement.
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The final area of optimization is brain area target: while M1 or premotor cortices

may be the apparent best source of volitional signals, not all control is motor. The

cingulate cortex has been successfully used to demonstrate a BMI (Marzullo et al.,

2006), as well as human frontal cortices exposed during DBS surgeries (Ojakangas

et al., 2006), suggesting that likely a great many places in the brain can successfully

be used to control a BMI, which is in accord with original studies showing that most

all parts of the brain can be operantly conditioned.

Several researchers flipped BMI around and used it to investigate motor learning

– that is, using the tool to improve our knowledge of the brain and not just to improve

the tool. Within the Nicolelis lab, studies show that cortical modulations increase

during early BMI control sessions (Zacksenhouse et al., 2007), possibly working like

LMAN in songbird vocal learning. Jose Carmena and colleagues repeated training

of a BMI across multiple days using a fixed decoder (Ganguly and Carmena, 2009),

thereby showing progressive motor learning over the course of weeks, proving that

a stable control mapping can be learned (though perhaps not elucidating exactly

how this is learned). The group later found evidence supporting internalization of a

motor model for BMI control (Ganguly et al., 2011); this model co-existed with that

used by the monkey to control its limb normally. By perturbing such an internalized

BMI model, further experiments showed that functional reorganization followed a

rapid and reversible timecourse, with individual neurons learning reoriented tuning

curves within a single training session (Jarosiewicz et al., 2008).

Notably absent from the literature is an investigation of multidimensional operant

conditioning, or conditioning of multiple populations for independent, orthogonal

control directions. Such a study would avoid the issue that true supervised learning,

as used in many recent BMIs, is not possible in the intended target audience of

amputees and paralyzed individuals: they want new axes of control, not duplicates

of existing axes. More fundamentally, such an experiment would permit watching
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the cortex infer what groups of neurons do, and permit observation of how it learns

to control sets of neurons (or if it can learn arbitrary multidimensional operant

control). One would imagine that, as pyramidal tract neurons map semi-directly to

muscles, control is learned in the same way that normal motor control is learned:

via experimentation and under visual feedback. Some work by the lab supports this

hypothesis (Zacksenhouse et al., 2007), but it deserves a more thorough investigation;

it could be that the motor cortex learns quickly or employs gradient-descent methods.

Earlier work conflates learning with performance, as neurons are regressed against

decoded performance instead of the firing profile needed to obtain reward, making it

difficult to see what and how the cortex is assigning credit and modifying tuning.

In all these BMI experiments high bit-rate or spatial fidelity has been difficult to

achieve. In the last four years of my graduate work it has been my intuition that

this is because the supervised-learning models require, effectively, high-dimensional

inference of the decoder matrix (or matrices in Kalman filters). Jose Carmena’s

results (Ganguly and Carmena, 2009) provide evidence to the contrary, but we still

haven’t seen a reliable, low noise BMI; in the Nicolelis lab, control has a SNR of 6-10

db (3:1 amplitude ratio) at a bandwidth of « 2 Hz, equivalent to 3.2-6.4 bits/sec (*).

This rate is too low for a practical prosthesis, as it is only marginally better

than surface EMG control from two muscles. I’ve attempted to attack a number of

parameters that affect the quality of control, mainly:

• Training time. Give the monkey unfettered, 24/7 access to the BMI to maxi-

mize use and learning.

• Motivation. Provide the BMI in the best environment available to him.

• Number of channels. The recording system scales to and above the total num-

ber of electrodes we presently have implanted in one monkey (768).
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• Simplicity. The BMI is a tool, hence its transformation matrix should be easily

invertible for learning.

The conclusion of these desiderata was the wireless system; but prior that work,

deep brain stimulation and microstimulation were investigated, so they will be de-

scribed first.

(*) For the curious, here is the math for determining the bit-rate of conveyed

by one gaussian random process about another in terms of the signal-to-noise ra-

tio between the two. Assume x is the known signal to be predicted, and y is the

prediction.

Let’s define SNRpyq “ V arpxq
V arperrq

where err “ x´ y. Note this is a ratio of powers;

for the conventional SNR, SNRdB “ 10 ˚ log10
V arpxq
V arperrq

. V arperrq is also known as

the mean-squared-error (mse).

Now, V arperrq “
ř

px´ y ´ ¯errq2 “ V arpxq ` V arpyq ´ 2Covpx, yq; assume x

and y have unit variance (or scale them so that they do), then

2´ SNRpyq´1

2
“ Covpx, yq

We need the covariance because the mutual information between two jointly

Gaussian zero-mean variables can be defined in terms of their covariance matrix.

Here Q is the covariance matrix,

Q “

„

V arpxq Covpx, yq
Covpx, yq V arpyq



MI “
1

2
log

V arpxqV arpyq

detpQq
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Table 1.1: Mutual information in terms of SNR

SNR Amp. ratio MI (bits)
10 3.1 1.6
20 10 3.3
30 31 5.0
40 100 6.6
90 31e3 15

DetpQq “ 1´ Covpx, yq2

Then

MI “ ´
1

2
log2

“

1´ Covpx, yq2
‰

or

MI “ ´
1

2
log2

„

SNRpyq´1 ´
1

4
SNRpyq´2



This agrees with intuition. If we have a SNR of 10db, or 10:1 (power ratio),

then we would expect to be able to break a random variable into about 10 different

categories or bins (recall stdev is the sqrt of the variance), with the probability of the

variable being in the estimated bin to be 1/2. (This, at least in my mind, is where the

1/2 constant comes from - if there is gaussian noise, you won’t be able to determine

exactly which bin the random variable is in, hence log2 is an overestimator.)

Here is a table with the respective values, including the amplitude (not power)

ratio representations of SNR.

Note that at 90dB, you get about 15 bits of resolution. This makes sense, as

16-bit DACs and ADCs have (typically) 96dB SNR. Good.

Now, to get the bitrate, you take the SNR, calculate the mutual information,

and multiply it by the bandwidth (not the sampling rate in a discrete time system)

of the signals. In our particular application the bandwidth is between 1 and 2 Hz,

hence we’re getting 1.6-3.2 bits/second/axis, and 3.2-6.4 bits/second for our normal
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2D tasks.

1.6 Parkinson’s Disease, Essential Tremor, and DBS

Parkinson’s disease is a prevalent, idiopathic, progressive neural degenerative disor-

der which clinically manifests through bradykinesia (slow movements), akinesia (no

movement), tremor at rest, muscular rigidity, and abnormal postures or postural in-

stability. Symptoms also may be non-motor, including speech disorders, depression,

and dementia (Mink, 1996). Physically, Parkinson’s disease is primarily character-

ized by the death of dopaminergic neurons from the substantia nigra pars compacta

(SNpc); symptoms normally do not appear until 50-80% of these neurons have disap-

peared (Benabid et al., 2009). Death of SNpc neurons is tightly correlated with the

presence of α-synuclein immunoreactive Lewy bodies within the nucleus, pathology

which later spreads to the remainder of the basal ganglia and into the neocortex

(Braak et al., 2003). The mean age of incidence of PD is around 60 years, though

10-15% of patients have much earlier onset due to hereditary21 (Lohmann et al.,

2009) or environmental factors.

Dopmanimergic neurons from the SNpc project to and synapse upon all of the

basal ganglia, with a predominant efferent projection to the striatum (the puta-

men and caudate, split by the internal capsule). The striatum, and basal ganglia

in general, are also intimately involved in the etiology of Huntington’s disease, in

which medium striatal neurons (MSN), neurons which project from the striatum to

globus pallidus, are lost. Symptoms of Huntington’s disease are nearly opposite that

of PD: chorea (dance-like movement that mimic voluntary purposeful movements),

dyskinesia (uncontrolled and short-duration movements), tics, and dementia (Mink,

1996). As the basal ganglia are critical for understanding and treating these diseases,

21 Within the Amish population in the northeastern United States, the incidence of PD is three
times the national average
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their anatomy and structure will be first reviewed, followed by their still-contentious

normal and pathological function .

1.6.1 Anatomy of the Basal Ganglia

The basic anatomy of the basal ganglia is shown in figure 1.8. The striatum is the

primary input to the BG, and consists of the cytoarchitecturally similar caudate and

putamen. These have neurons which project to the internal and external segments

of the globus pallidus, GPi and GPe respectively22. The GPi and substantia nigra

pars reticulata (SNr), despite the two names, are structurally very similar, and con-

stitute the output nuclei of the BG. They send inhibitory GABA-ergic axons to the

thalamus, superior colliculus, and pedunculopontine nucleus of the brainstem, and

thereby effect motor behavior, albeit indirectly. The projection from striatum to GPi

is classically called the ’direct’ pathway, and second ’indirect’ pathway exists from

the striatum, through the GPe, subthalamic nucleus (STN), and then to the output

GPi/SNr (Parent and Hazrati, 1995b).

The classical direct/indirect pathway leads to a neat explanation for the primary

symptoms of Parkinson’s disease (rigidity, bradykinesia, akinesia) in terms of rate

modulations in the involved structures. Figure 1.9 shows this hypothesis graphically.

As shown in the figure, a loss of dopaminergic afferent to the striatum leads to de-

creased firing in GPi projections, and increased firing in the GPe projections. This

in turn decreases GPe activity, and increases GPi/SNr inhibitory output, thereby

inhibiting the cortex through the centromedian, ventral anterior and ventrolateral

thalamic relays, and hence inhibiting motor behavior. In Huntington’s disease the

signs of these changes are reversed: loss of medium striatal neurons leads to in-

creased pallidal activity and decreased excitation of the STN, leading to less GPI/SNr

22 In older literature these are referred to the MPS (medial pallidal segment) or MGP (medial
globus pallidus) for the GPi and LPS/LGP for the GPe (Penney and Young, 1983)
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Figure 1.8: Simplified schematic of the basal ganglia. From (Parent and Hazrati,
1995b).

Figure 1.9: Rate modulations in Parkinson’s disease. Gray arrows are excitatory
(glutamate), black arrows are inhibitory (GABA). From (Wichmann and Dostrovsky,
2011).

GABAergic inhibition of VA/VL, and ultimately exposing thalamic neurons to re-

spond indiscriminately to all sorts of inputs and hence leading to hyperkinesia.

The classical direct/indirect pathway, while terse and effective in its ability to

explain some features of Parkinson’s and Huntington’s disease, has limited anatomi-

cal and functional support. Most glaringly, STN inputs from the GPe spare regions
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Figure 1.10: Diagram of striatal projections. A, original overlapping-subdomian
hypothesis. B, modern hypothesis, where projections from cortex form non-
overlapping parasagitally elongated domains in the caudate and putamen. C, sim-
plified diagram of cortical projection axons. From (Parent and Hazrati, 1995a).

projecting to the GPi/SNr; they constitute separate, parallel, pathways (Parent and

Hazrati, 1995b). Furthermore, the hypothesis ignores the complexity, precise organi-

zation, and presence of multiple feedback loops in the basal ganglia, to be overviewed

below.

As mentioned above, the striatum consists primarily (95%) of medium spiny neu-

rons; these neurons are exclusively GABAergic (Mink, 1996). The dendritic fields

of MSNs lie in semi-coronal parallel planes at right angles to the incoming massive

cortical afferents, similar to the structure seen in the cerebellum; these cortical af-

ferents are partially collaterals from the pyramidal tract. Excepting primary visual

and auditory cortex, nearly all of the cerebral cortex projects into the striatum, with

the incoming axons synapsing a relatively few times onto many MSNs in passage

(Parent and Hazrati, 1995a). See Figure 1.10 for a diagram.

The vast reduction in neuron numbers from the cortex to the striatum – between

40:1 and 100:1 in mammals (Morris et al., 2003) – has lead to suppositions that
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there is overlap or recombination between multiple projection domains, possibly as

a means of merging disparate information sources from the cortex and forming novel

representations thereof. In fact, the actual projection is discrete and patchy, with

association, sensorimotor, and limbic cortical areas projecting in a segregated manner

onto at least three different distinct striatal regions. In cortical regions of close

functional similarity, namely the frontal and supplementary eye fields, projection

domains may be interdigitated but do not mix (Parent and Hazrati, 1995a).

The striatum itself is not homogeneous, but consists of regions heavily and lightly

stained for acetylcholine, corresponding to the striosomes and matrix, respectively.

Approximately 2% of striatal neurons are large aspiny neurons, which appear to be

interneurons that use acetylcholine as their neurotransmitter. Medium spiny neu-

rons are bistable, and can switch between hyperpolarized (-80 mV) and polarized

(-50 mV) states (Wilson and Kawaguchi, 1996); this bistability seems to be medi-

ated by the large aspiny cholinergic neurons in the striosomes (Mink, 1996), although

dopaminergic control has not been ruled out. Striosomes and the surrounding matrix

receive differential projection from the cortex: cortico-striatal neurons in the infra-

granular layers (V-VI) project principally to striosomes, while supragranular (I-IV)

axons project to the matrix. Single cortical regions project to multiple striosomes,

as labeled by anterograde tracers, but these multiple modules can send afferents to

single sites in both the GPe and GPi (Flaherty and Graybiel, 1994). Projections

from the thalamus, mainly the centromedian / parafasicular nuclei, synapse onto

morphologically distinct synapses from those of cortical afferents. Finally, individual

MSN receive axon collaterals from neighboring MSNs, as well as nitric oxide releasing

interneurons (Parent and Hazrati, 1995a). See Figure 1.11.

Dopamine within the striatum plays a pivotal role in supporting normal neural

activity, synaptic plasticity (Prescott et al., 2009), and motor learning (Lehericy

et al., 2005), though understanding of the last remains incomplete. There are two
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Figure 1.11: Diagram of afferents to a medium spiny neuron in the striatum. From
(Parent and Hazrati, 1995a).

classes of dopamine receptors in the striatum, D1 and D2, and they appear to both be

involved in LTD; in contrast LTP is D1 dependent, and is enhanced by the block of D2

receptors (Centonze et al., 2001). Synaptic plasticity appears to be mediated through

NMDA receptors, with dopamine and glutamate receptors highly colocalized (Ariano

et al., 1997), though dopamine cannot directly depolarize the cells (Calabresi et al.,

2000). Furthermore, cortico-striatal synapses have spike-timing dependent plasticity

(STDP) which is also gated by dopamine (Pawlak and Kerr, 2008).

Nitrous oxide, enkephalin, dynorphin, substance P, and other signaling molecules

have strong and specific roles as well in the striatum. Dynorphin is expressed in

the direct (GPi) pathway along with the D1 receptor and is involved in behavioral

sensitization; enkephalin in expressed in striatal matrix neurons along the indirect

(GPe) pathway, is colocalized with D2 receptors, and has been indirectly linked to

recovery of motor function (Albin et al., 1989; Steiner and Gerfen, 1998). Matrix neu-

rons expressing substance P project mainly on GPi or SNr, while striosome neurons

expressing the same neuropeptide project to the SNpc.

Efferents from striatum are anatomically highly organized and layered as well.
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Figure 1.12: Diagram of striatal projections derived from computerized camera
lucida drawings. A, anterograde injection sites. B C D, labeled projections in the
pallidus, moving rostral to caudal. E F, labeled projections in the substantia nigra
showing broad axonal arborization in the pars reticulata, and varicosities within the
pars compacta. For more detail see (Parent and Hazrati, 1995a).

Much like their input, projections impinge at right-angles to parallel dendritic planes

within the palladium. For yet unclear reasons, single labeled regions of the striatum

arborize twice upon target structures in the globus pallidus and substantia nigra

in longitudinally oriented terminal fields that cover nearly the entire rostrocaudal

extent of the structures – see Figure 1.12.

Within the GPi and SNr, structures that are cytoarchitecturally the same but are

split by the internal medulary lamina, striatal afferents form wooly fibers on neurons

there, again in a tightly organized rostral-caudal sequence. Within the SNr, these
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Figure 1.13: Wooly fibers and climbing fibers within the SNr. The former are
shown encircling proximal dendrites at the bottom, the latter ascending to compacta
cells in the middle. All neurons are inhibitory, GABAergic. For more detail see
(Parent and Hazrati, 1995a).

axon collaterals form climbing fibers – again much like in the cerebellum – which

impinge upon dopaminergic neurons within a subsection of the SNpc, as depicted

in figure 1.13. In the Gpi, striatal fibers form wooly fibers twice, and in distinct

populations from corresponding GPe neurons, as shown in Figure 1.14. In this way

striatal regions may directly and indirectly effect four groups of GPi output neurons.

This distinct nature of the projections strongly weigh against simplified ’direct’ and

’indirect’ pathways (Parent and Hazrati, 1995b).

The GPi/SNr, in turn, sends inhibitory GABAergic axons to the ventrolateral /

ventral anterior motor thalamus and to the brainstem, both ipsi- and contralateral,

with about 70% of these collateralized to at least two areas. In the brainstem, collat-

erals project to the pons adjacent and within to the pedunculopontine nucleus, and

in turn to the reticulospinal or extrapyramidal motor system (Mink, 1996). Further

BG collaterals innervate the centromedian / parafasicular nuclei of the thalamus,

which project back to the striatum (and not to the cortex), or back to the SNpc
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Figure 1.14: Schematic representation of afferents in the GPi. Striatal axons
arborize twice in both GPe (black cells) and GPi (gray cells); GPe cells in turn
synapse upon GPi cells rostrocaudally distinct from those targeted by striatal cells
from the same region. From (Parent and Hazrati, 1995b).

(Parent and Hazrati, 1995a).

The Subthalamic Nucleus

The final, and pivotal, region within the basal ganglia is the subthalamic nucleus. As

it has proven to be a very effective target for DBS treatment, the STN has been sub-

ject to intense study for the past two decades. The region is conserved in mammals,

though functionally different in primates, as only in primates does the STN receive

direct cortical afferents and pyramidal collaterals (Georgopoulos et al., 1983). Fur-

thermore, in primates the many projections to GPi, GPe, and SNr are more distinct

and segregated; in rodents, these projections are highly collateralized (Parent and

Hazrati, 1995b), though this anatomical finding remains disputed (Levesque and Par-

ent, 2005). In the rat the STN is small hence difficult to study, only 25,000 neurons,

whereas in humans it numbers around 500,000 (Florio et al., 2001). These neurons

are almost completely excitatory, glutamergic projection neurons, with very few in-

hibitory interneurons in the nucleus itself. STN neurons arborize in laminar planes
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Figure 1.15: Schematic representation of STN projections to GPe, showing breadth
and strength of projection. From (Parent and Hazrati, 1995b).

in the pallidus, parallel to and in register with striatal inputs, on both the internal

and external segments (Carpenter et al., 1981). Projections to GPe are particularly

broad, which the STN is reciprocally connected to, allowing activation of large pop-

ulations of pallidal neurons –see Figure 1.15. GPe reciprocally projects collaterals to

STN, organized in rostrocaudal arrays, with strong GABAergic synapses on proximal

dendrites that are capable of driving rebound excitation (Bevan et al., 2002). There

is a consistent functional organization in this reciprocity: interconnected neurons in

the subthalamic nucleus and GPe innervate the same neurons in GPi (Shink et al.,

1996). Anterograde tracing finds few if any projections from GPi to STN, however

(Carpenter et al., 1981).

In primates the dorsolateral subthalamic nucleus recieves extensive afferents from

M1, premotor corticies (SMA, PMd/v) (Monakow et al., 1978), FEF (Hamani et al.,

2004), relatively few (if any) projections from postcentral / S1 (Wichmann and

Dostrovsky, 2011), along with proprioceptive input (DeLong et al., 1985). The STN

is somatotopically organized, with at least two functional divisions rostral/caudal:

dorsal STN corresponds to movement and motor function, whereas rostral STN cor-
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responds to associative and limbic function (DeLong et al., 1985). Ventromedial STN

receives topographic afferents from the frontal and supplementary eye fields (Parent

and Hazrati, 1995b). Somatotopy in both regions is partially destroyed in PD, with

receptive fields becoming more bilateral (Hamani et al., 2004).

Synthesis

The anatomy of the basal ganglia is far richer, more nuanced, and organized than

simplistic box-and-arrow models may suppose. Of particular note are the crystal-like

parallel dendritic planes and perpendicular axons in both the striatum and pallidus,

the prevalence and importance of collaterals in nearly all the structures (Parent et al.,

2000), the multiple parallel pathways in the striosomes / matrix or dual projections

into the pallidus, and the high degrees of asymmetry in synaptic strength between

woolly, climbing fiber, and varicose arborizations. Any model or understanding of

how the basal ganglia functions normally and in Parkinson’s disease should take into

account this anatomical complexity; box-and-arrow propagation of sign models do

not suffice.

1.6.2 Physiology of the Basal Ganglia

In accord its role in the pathology of motor diseases, the basal ganglia is known to

be tightly involved in motor behavior; however, the extent and nature of that role

is still an active area of research. As with anatomy, regions will be addressed in

approximate synaptic order.

Cells within the striatum have a low static firing rate of 0 - 1 Hz (Crutcher and

DeLong, 1984a), and as mentioned can switch between hyperpolarized and polarized

states depending on interneurons and convergent cortical input (Mink, 1996). While

both muscle, load, sensory, and proprioceptive modulations have been observed in

the firing rates of striatal cells, more cells are related to the direction of movement
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than muscle activation when force and movement direction were dissociated in an

arm task (Delong et al., 1984). This is consistent with timing, too: cells in the

striatum fire both before and after M1 and EMG activity, or are driven by sensory

input (Crutcher and DeLong, 1984b). Recordings from the striatum have found a

variety of firing profiles, with proportions of cells firing before, during, and after a

cue in a delayed-cue task (Romo et al., 1992). In a spontaneous movement task, a

largely disjoint group of cells (to those responding in the cued task) was found to

increase activity 0.5-5 s before movement. Other cells were found to have sustained

preparatory activity for up to 80 s in a delayed go / nogo task; yet others responded

to task cue, independent of modality; others only responded only if sensory input was

in the context of a movement (Schultz and Romo, 1992). Cholinergic interneurons

(large aspiny) fire in response to sensory cues as well, with a relatively constant firing

rate of 3-6 Hz, but have no relation to movement (Mink, 1996).

The heterogeneity of responses, with correlations to both motor and cognitive

features, does not lead to a clear role of the striatum; proposed theories include com-

puting the behavioral contingencies of reward (Hollerman et al., 2000), the scaling

of force and velocity (Turner and Desmurget, 2010), or the selection and sequencing

of competing motor programs (Mink, 1996). The last is supported by long-train mi-

crostimulation to the striatum. Whereas short train stimulation occasionally induces

myclonus, longer bouts of microstimulation to the posterior striatum induces com-

plex, abnormal behavior: finger licking and biting, dyskinesias, and grooming; more

anterior (putative associative regions) results in hyper or hypomanic or stereotyped

behaviors (Worbe et al., 2011).

Timing evidence suggests that the striatum does not play a role in the early

phases of a movement, which is consistent with cooling studies, kainic acid lesions,

and microstimulation. Furthermore, the striatum does not seem to receive spindle

afferents; proprioceptive information as seen in response to passive movement seems
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largely relative to joint angle (Crutcher and DeLong, 1984a).

In comparison to the striatum, cells in the globus pallidus have a higher tonic

firing rate of 80-100 Hz and can both increase and decrease firing rate in relation

to movement (Georgopoulos et al., 1983). Within the GPe most cells show high

firing rate with frequent long pauses, while a smaller subset of neurons have a lower

mean firing rate interrupted by very high frequency bursts. Cells within the GPi

all show a high mean firing rate with shorter pauses and infrequent bursts. These

pauses are presumably effected by inhibitory striatal input. Somatotopy is mixed

within both structures, with a relatively higher representation of proximal muscles

and movement, not muscle activation (Delong et al., 1984). As in the motor cortex,

there have been found linear relationships between movement direction and distance,

though in the pallidus tuning is not nearly as deep (Georgopoulos et al., 1983). Other

studies have found the relation of pallidal discharge to specific muscles and single

joints, both contralateral and ipsilateral (Iansek and Porter, 1980). Passive response

to movement is evident in both segments of the pallidus, again mostly relative to a

single joint and not muscle spindle afferent (DeLong et al., 1985) or touch (Iansek

and Porter, 1980).

The substantia nigra pars reticulata is the sister output nucleus of the GPi,

with similar cell properties and firing rates. One third of all cells there are related

to visually-evoked saccades, with no response to saccades in the dark (Hikosaka and

Wurtz, 1983a); a further third of cells there responded to saccades to remembered tar-

get location (Hikosaka and Wurtz, 1983c), and a fraction of the remainder responded

to auditory and sensory cues (Hikosaka and Wurtz, 1983b). The SNr projects in-

hibitory afferents to the superior colliculus, hence decreased SNr discharge results

in disinhibitition in the SC and initiation of saccades. The region has also been

implicated in simultaneous head orienting (neck muscle) movements (Mink, 1996).

The STN, with its broad connectivity within the BG, has a variety of cell response
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types. Cells are tonically active, with a resting rate of 20 Hz, and predominantly

increase firing rate with respect to arm or leg movement (Wichmann et al., 1994). As

mentioned above, these motor-related cells are located in the dorsolateral STN, while

the ventromedial thalamus is associative and oculomotor, with a smaller region ded-

icated to limbic function (Parent and Hazrati, 1995b). In the dorsolateral STN there

is a somatotopic representation of motor space, with the lower extremity dorsal and

face / eyes ventral. In accord with strong motor cortex afferent, movement-related

response is much stronger in the STN than the pallidus, with approximately half

to three quarters of recorded neurons correlated to movement direction, amplitude,

and peak velocity (Georgopoulos et al., 1983), and with a preponderance of proximal

muscle representation (Wichmann et al., 1994). Unlike neurons in the striatum and

pallidus, subthalamic cells respond strongly to muscle palpitation. As mentioned,

there are few if any interneurons in the STN, and cells in normal subjects show a

low degree of cross-correlation (Wichmann et al., 1994).

The exact function of the STN, especially given it’s role in treatment, is still

under debate. When the STN humans or other primates is lesioned, either experi-

mentally or through stroke, violent hemiballismus results (involuntary, stereotyped

large-amplitude movements limited to one side of the body) (Florio et al., 2001; Lee

et al., 2005). Other effects of infarction of the STN include agitation, manic behavior,

and logorrhoea (incoherent talkativeness) (Rodriguez-Oroz et al., 2011). This severe

behavior gradually decreases with time, suggesting that plasticity or learning com-

pensates for the loss of excitatory GP input (Guridi and Obeso, 2001). Hemibalismus

is illuminating on the strength and nature of synaptic innervation of GPe/GPi: while

48% of STN axons are collateralized to both GPi/GPe, and 21% to GPe, GPi, and

SNr (Hamani et al., 2004), the relative exitatory influence on GPi must be greater,

since loss of excitation will decrease GPi firing, leaving the motor thalamus disinhib-

ited. Were the primary effect to be in the GPe, decreased inhibitory GPe activity
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would disinhibit GPi, inhibiting motor thalamus, at least according to a rate model.

Of particular note is the strong reciprocal connection of GPe to the STN (Shink

et al., 1996); not only do pallidal cells oscillate spontaneously when isolated in vitro

due to membrane properties (Bevan et al., 2002), but models have shown that this

tight loop is particularly prone to oscillation (Holgado et al., 2010). Oscillations, and

their relationship to tremor and other symptoms of PD, will be discussed further

below.

Function of the Basal Ganglia

An understanding of the normal function of the basal ganglia is useful if not vital to

understand the pathology of Parkinson’s disease, Huntington’s disease, and others.

While there has been a long line of research on the BG, no one definitive theory

has adequately explained all (or even most) functions, either normally nor patholog-

ically. This difficulty may be traced to the confusing and obscuring aspects of the

disorganization resulting from disease, and the necessary bias for recording from PD

patients and not normal humans (Mink, 1996).

S. A. Kinnier Wilson is credited with being of the first to realize the link between

pathology of the BG (as opposed to the corticospinal system) and dysfunction in PD,

HD, and other movement disorders, and hence the basal ganglia’s normal role in the

command and control of movement. He hypothesized that movement disorders in

HD were the result of the cortex responding without discrimination to afferent input

(Kinnier wilson, 1925) – that is, the cortex serves as a very general-purpose associa-

tive memory, and the basal ganglia keeps the vast spread of auto-associations from

reacting blindly to the sensory world. In the intervening 90 years, this hypothesis not

been disproved, though the theory has been elaborated and morphed by new data.

In Kinnier’s day it was thought that the pyramidal system was inherently plastic,

whereas the extrapryramidal system was static and archaic; yet now it seems that
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BG is critical in guiding learning.

The most common, and perhaps best supported, theory behind basal ganglia

function is that it serves to select one from many competing motor programs (Mink,

1996). This is consistent with the gross, common symptoms of PD and HD – inability

to initiate movements in PD, and inability to inhibit chorea in HD, and the fact that

some movement disorders can be controlled by selective sensory input (Albin et al.,

1989). The theory takes into account several salient features of the basal ganglia,

namely the highly convergent projections from cortex Ñ striatum Ñ pallidus, which

can be used to compute behavioral contingencies to determine which motor programs

to enable; such contingencies are seen in the context-dependent sensory responses

seen in the striatum. In this motor-selection theory the direct pathway is used to

disinhibit desired movement, and the indirect pathway to inhibit competing programs

and control the direct pathway (Shink et al., 1996). A malfunction of inhibition

is particularly apparent in microgrpahia, where PD patients’ handwriting becomes

progressively smaller during the course of writing, presumably due to competition

from alternative letters, words, and sentences (Mink, 1996). It also seems consistent

with ataxia due to rigidity, as PD patients are unable to inhibit long-latency (cortical

loop) stretch reflexes following instruction, unlike normal controls (Berardelli et al.,

1983).

The motor selection theory suffers from a number of counterfactual evidence,

much like almost every other theory surrounding the BG. Lesions of the GPi im-

prove dyskinesias without inducing hemibalismus, with minimal effects on motor

function in PD patients (Brown, 2003); they remain an effective surgical treatment

for the disease. Secondly, changes in pallidal activity mostly lag behind movement

initiation (Israel and Bergman, 2008). Thirdly, paradoxical kinesis – a surprising

ability to move following sensory impetus, as seen with encephalitis lethargica pa-

tients in Oliver Sacks’ Awakenings, and generally seen as indicative of inhibition
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malfunction – appears to be a general property of the motor system, and is largely

unchanged in PD (Ballanger et al., 2006).

One overriding feature of the BG is the strong convergence / divergence (Morris

et al., 2003), which with the advent of new computational learning theories and data

showing dopamine looks like an ideal error-reinforcement signal (Hollerman et al.,

2000), led to the idea that the BG performs reinforcement driven dimensionality

reduction (RDDR) (Bar-Gad et al., 2003). In reinforcement learning, an animal or

’agent’ progressively learns the value of actions contingent on ’state’ based on a scalar,

episodic reward signal (Barto and Sutton, 1998). There is substantial and growing

evidence that the BG implements a form of reinforcement-learning, especially the

the anterior forebrain pathway (AFP) in songbirds, which is a homolog of the BG.

Data from mammals is less clear, but growing: striatal neurons change response

prior cortical neurons in a learning task, and the degree of striatal firing variance is

correlated with performance in a reinforcement-learning task (Graybiel, 2005). Fur-

thermore, dopamine regulates the impact of the cerebral cortex on the subthalamic

nucleus-globus pallidus network (Magill et al., 2001), as would be required by the

theory. Note this is not dissimilar to the motor selection, as reinforcement learning

inherently involves selection of actions based on value and salience, as verified in

numerical models of the BG e.g. (Prescott et al., 2006).

Some have extended/reinterpreted reinforcement learning to mean dopamine mod-

ulates model complexity (Parush et al., 2011) – that is, dopamine organizes actions

by controlling the tradeoff between reward gain and behavioral cost. If the dopamine

disappears, this model would imply that the basal ganglia becomes randomly orga-

nized (Heimer et al., 2006), which is consistent with both the literature and our own

data.

Another salient feature is that Parkinson’s patients have difficulty with long,

complex movements (Brown, 2003), and are prone to repetitive, habitual actions
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following levodopa treatment, which is more consistent with sequencing than selec-

tion. The BG role as a behavior sequencer is plausible, except that evidence weighs

against habits residing in the striatum or other BG structures: when monkeys were

overtrained on a repetitive task and tested with both random and stereotyped move-

ments, the kinematics but not habits of movement were effected by MPTP lesion

(Desmurget and Turner, 2010).

The basal ganglia’s consistent role in learning and scaling led to a final theory

that it serves as a ’vigorous tutor’ (Turner and Desmurget, 2010). This is somewhat

a superset of reinforcement learning, as intensity scaling is both an essential feature

of motor control (how far do you want to throw the stick, jump etc.), and when

applied to broader behavioral or cognitive strategies, supports preference scaling

and selection23. It is also consistent with the nature of BG dysfunction – problems

occur not when the output structures are lesioned (indeed, this is therapeutic), but

when the striatal input or learning structure begins to fail (Turner and Desmurget,

2010).

The theory explains several consistent features of GPi lesion: unchanged reac-

tion time (the BG is not involved in movement selection), unchanged on-line error

correction (this must be cortical), unchanged habitual motor actions (habit does not

have substrate in the BG), but consistent movement velocity and acceleration re-

duction, without changes in linearity or direction. Bradykinesia /akinesia is, after

all, a primary symptom of PD. Micrographia is also neatly explained – rather than

having many competing actions as above, the action gain simply goes down. It is

also consistent with a hallmark feature of PD, inability to voluntarily control grip

force or reflex scaling, as discussed in the ”Piper Rhythm” section below. Finally,

pallidotomy is associated with an impaired ability to learn new stimuli sequences

23 This argument sounds unfortunately broad, like saying that multiplication and addition can
support all arithmetic.
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(Brown et al., 2003) and probabilistic classification learning (Sage et al., 2003). This

is confirmed in a patient with surgical lesion of both STN and GPi, effectively elimi-

nating all output of the BG; the only clear deficit was the complete inability to learn

implicit sequences (Obeso et al., 2009).

1.6.3 Pathophysiology of the Basal Ganglia in PD

Classical hypotheses place Parkinson’s and Huntington’s disease on opposite ends

of basal ganglia dysfunction. In hyperkinetic disorders, such as HD, chorea (dance-

like movements) and atheosis (writhing-like movements) are supressed by D2 recep-

tor antagonists and exacerbated by dopamine agonists. Early HD, when chorea is

most prominent, is characterized by a selective loss of enkephalin-staining neurons

projecting to the GPe. In the rate model, this corresponds to a relative increase

in GPe firing, inhibiting GPI/SNR neurons, disinhibiting motor thalamus and cor-

tex. Hypokinetic disorders, primarily Parkinson’s disease, are exacerbated by D2

receptor antagonists and ameliorated by DA agonists as well as anti-cholinergics.

Here the rate model posits that GPi/SNr firing increases due to disinhibition from

D1/substance P striatal projections (Farshchi et al., 2006). The rate model is also

consistent with recording from dystonia patients, where it was found that GPi firing

rate was inversely correlated with dystonia severity (Starr et al., 2005).

Though several rate models have been proposed over the years, they all seem

to suffer from contradictory experimental evidence. Perhaps most damning, tha-

lamotomy does not result in worsening of Parkinsonism, as would be expected if

enhanced GPi/SNr inhibition was the root cause of akinesia/bradykinesia in PD.

Likewise, GPi lesions do cause bradykinesia in normal monkeys, despite the loss of

inhibitory output. Clinical pallidotomy has been shown to be primarily effective in

alleviating l-dopa induced dyskinesias (in this case involuntary movements, like tic

or chorea) – again exactly the opposite of what the model would predict (Israel and
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Bergman, 2008). As would be expected from HD above, GPe lesion should cause

hypokinetic disorders – but it does not (Wichmann and Dostrovsky, 2011).

Examination of firing rate changes are confounded by the fact that they very

based on subject awareness and arousal, and in the case of intraoperative recording,

anesthesia and other drugs (Wichmann and Dostrovsky, 2011). We have observed

this effect in our patients, as seen in Figure 2.5. Further negative evidence comes

from data showing synchrony can increase by a factor of 100 in the pallidus of animal

models of PD, while the firing rate itself decreases only slightly (Mallet et al., 2008a).

The failure of any rate models to explain all or most clinically observed data, and

growing evidence for markedly increased levels of synchrony and oscillations in PD,

led to suppositions that these were correlative or causative of pathology.

Synchrony & Oscillations

Synchrony and oscillations in the basal ganglia are both prevalent and heavily stud-

ied in relation to PD, yet despite the intense scrutiny, a scientific consensus as to

their cause, significance, and role has yet to be reached. For the purposes of discus-

sion, researchers have co-opted the frequency bands of EEG for discussion of LFP

oscillations found within PD patients and models, which are: theta 4-8Hz, alpha

8-13Hz, beta 13-30Hz, gamma “ą 30Hz. Adherence to these bands is loose and

supplemented with actual frequencies where appropriate. What follows is a review

of some of the conflicting evidence regarding synchrony and oscillations in PD, with

as much organization as can be managed – a full review is impossible, as there are

literally thousands of papers (with at least 260 reports on PD back in 2004 (Benabid

et al., 2005)), and collating reams of contradictory evidence is difficult.

One prominent theory behind oscillations in the basal ganglia is that, when broken

into two ranges ą 30Hz and ă 30Hz, the two are inversely affected by both move-

ment and dopmaine treatment, with ă 30Hz decreased by movement and levodopa
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Figure 1.16: Oscillations in the BG in ON and OFF conditions. A,B: raw LFP
traces. C,D: power spectral density of the LFP. From (Wichmann and Dostrovsky,
2011).

and ą 30Hz increased (Brown, 2003). See figure 1.16 for example data showing the

strong effect of levodopa on BG LFP24. This effect has been confirmed in MPTP

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) lesioned monkeys, where administra-

tion of this potent dopamine neuron targeting neurotoxin causes intermittent tremor

band (theta) and double tremor band (alpha) oscillations in both the basal ganglia

and motor cortex (Bergman et al., 1994; Raz et al., 2000).

With DBS, the dominant EMG frequency shifts from « 12Hz to 40 Hz, as in

the Piper rhythm, leading Cassim et. al. (2002) to suggest DBS treatment is con-

sistent with the low-high frequency hypothesis. The ”low-frequency system” would

impair movement, and would be blocked either by dopaminergic stimulation or focal

destruction of GPI or STN, thus explaining the good results of pallidotomy. The

”high-frequency system” would promote movement, oscillations would be involved

in keeping ”sumbolic movements” active (as in the temporal binding hypothesis),

and would be artificially enhanced by high frequency stimulation of either nucleus

(Cassim et al., 2002).

24 In at least some patients
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Litvak et. al. (2011) got conflicting results – dopaminergic medication modulated

the resting beta network, by increasing beta coherence between the subthalamic re-

gion and prefrontal cortex. They found that higher frequency oscillations ¿ 45Hz in

the STN LFP were not consistent with a cortical source, and cortical oscillations were

only weakly modulated by ON and OFF medication conditions (Litvak et al., 2011).

This might have been because the patients were at rest – not moving – and beta

band coupling between STN and CTX drops before and during movement (Cassidy

et al., 2002), though this study did support some effect of medication on changes in

oscillation frequency. Others have found differences in ON drug side-effects depend-

ing on STN LFP frequency and coherence: those with impulse control problems had

primarily theta-alpha activity (mean 6 Hz) coherent with frontal regions, those with

dyskinesias (mean 8 Hz) coherent with motor cortex (Rodriguez-Oroz et al., 2011),

though this remains unverified.

Despite this EEG-LFP coherence data, beta oscillations are resolved by ablation

of the cortex (Cassim et al., 2002), in both normal and 6-OHDA lesioned rats, sug-

gesting that GPe-STN is not an inherent oscillator. This concurs with slice studies

showing that STN neurons themselves do not exhibit the broad synchrony or oscil-

lations supposed in pathology 25(Wilson et al., 2006). Further support for cortical-

sourced oscillations comes from the observation that STN neurons primarily fire in

the positive phases of cortical EEG (Cassim et al., 2002). On the other hand, model-

ing studies indicate GPe-STN is capable of robust oscillations across a broad range of

synaptic connectivity strengths (Holgado et al., 2010) and other rat 6-OHDA models

indicate that oscillations become hardwired and independent of brain state hence

capable of driving activity in the rest of the BG (Mallet et al., 2008a).

Coherence between cortex and STN is exaggerated in Parkinson’s disease (Sharott

et al., 2005). This seems to be the result of neuroplasticity, as in rats it takes ą 4

25 Though, this is slice – Chapter 2 presents the opposite result in humans.
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days for beta oscillations to appear following excitotoxic leasion; acute disruption

of D1/D2 activity with antagonists does not enhance cortical or STN beta oscilla-

tions (Mallet et al., 2008b). However, in an inducible and reversible dopamine en-

hancement or depletion via dopamine transport (DAT) knockout mouse, dopamine

withdrawal induced an immediate increase in synchrony and change in LFP power

spectrum, and increased dopamine induced hyperkinesia concomitant with decreased

synchrony (Costa et al., 2006).

In monkeys exposed to chronic and progressive dopamine depletion, synchronized

oscillatory activity only emerged late in the experiment, as occurs in the normal pro-

gression of PD. Early in the depletion process, inhibitory responses in the pallidium

disappeared, concomitant with bradykinesia; only later in the disease, when bradyki-

nesia was severe, did exaggerated beta-frequency oscillations occur (Leblois et al.,

2007), implying that the oscillations are sequelae of a failure in plasticity and not

causal of motor symptoms; the more likely culprit is the lack of proper motor coding.

This is consistent with D1/D2 antagonist results, but not the DAT knockout mouse,

above.

Synchrony and burst discharge in STN and GPi increases following administration

of dopamine-agonist apomorphine (APO), which implies that synchrony is an anti-

pathological state. As expected, APO decreases limb tremor, but it also decreased

the proportion of cells in both nuclei responding to active, passive, and tremorous

limb movements, which is counter the reduction in dyskinesia (Levy et al., 2001).

Synchrony seems correlated or involved in tremor, too. Synchronized high-

frequency oscillations, 15-30Hz, between individual STN neurons were observed in

28 out of 37 pairs in five patients who had tremor in the operating room and none of

45 pairs in three patients who did not; this is in accord with out findings in chapter

2, where all cells synchronous to at least one other neuron were also co-modulated

with tremor. In comparison to the APO result of the preceding paragraph, dopamine
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treatment also supressed LFP HFOs, synchrony between STN neuron pairs, and syn-

chrony between tremor cells; movement also decreased synchrony between STN pairs

(Levy et al., 2002).

Intuitively, synchrony and LFP oscillations are inherently related, as in order

to observe broad periodic fluctuations in the LFP, many local neurons must have

synchronized firing at the same frequency. This is not a tight correspondence, though,

as Heimer et al (2006) find that synchrony and oscillations can exist independently.

In another study, only nonlinear techniques were capable of extracting the rela-

tionship between STN LFP and hand acceleration in 48 PD tremor patients; in our

study (Chapter 2), nonlinear techniques were also found to be successful in extract-

ing spike-tremor correlation, whereas no linear trend was found between oscillation

frequency and peak tremor frequency. Strangely, in that study phase-dynamics mod-

eling revealed that hand acceleration lagged LFP oscillations by one or two periods,

which is far longer than the 15-25 ms conduction delay from the cortex to the mus-

cles (Tass et al., 2010). Other studies have shown that STN and GPi firing at

tremor frequency locks only transiently to peripheral tremor (Hurtado et al., 1999),

again consistent with the heterodyne results in Chapter 2. Yet other studies using

magentoencephalography (MEG) with beamforming techniques shows that M1 and

EMG are predominantly coherent at double-tremor frequency (and not the actual

tremor frequency), and find that the contralateral cerebellum, in addition to pre-

motor, sensory, and posterior parietal cortices are all involved in the double-tremor

synchronization (Timmermann et al., 2003).

Improvement in bradykinesia and rigidity is proportional to the suppression of

excessive oscillations, irrespective of the frequency that synchronization occurs (Kuhn

et al., 2009). This indicates that there is a wide variety of synchronization responses

– see figure 1.17 – and levodopa may actually increase the oscillation power in some

patients. Other studies show that the percentage of neurons exhibiting oscillatory
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Figure 1.17: Changes in LFP oscillations in PD STN ON and OFF drugs. A and
B, power spectral density from two different patients, showing both beta suppression
by levodopa (A), and gamma enhancement (B). From (Kuhn et al., 2009).

firing in the beta range correlates with motor symptom improvement following drug

administration (Kuhn et al., 2009). But this does not necessarily imply causality

– the levodopa is the likely cause, or increased movement may be the cause of an

oscillation decrease, as occurs in normal individuals (Weinberger et al., 2009). Yet

another study indicates that plasticity in the SNr is critical for the propagation of

oscillations, and this plasticity is modulated by levodopa and serves to restore motor

function and quench oscillations simultaneously (Prescott et al., 2009).

The net effect of all these synchrony / oscillation studies is, quite frankly, a

bit confusing – and this is less than 10% of the literature available. It is clear that

oscillations and synchrony are important and common features of PD, with generally

increased beta band oscillations and synchrony in the diseased state, but the exact

nature and frequency seem highly idiopathic sequelae of pathology, and hence a
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relatively insensitive or low-utility metric for understanding disease. Closed-loop

DBS shows that oscillations may be a good therapeutic target, however, as will be

discussed below.

The Piper Rhythm

An interesting but contentious corollary to gamma-frequency oscillations in the basal

ganglia is the Piper rhythm. This refers to the observation that during isometric

muscle contractions, motor units synchronize at 40-60Hz. This frequency is much

too high to be supported directly by a feedback loop involving the muscle spindles,

and it appears in different muscles with remarkably different mechanical resonance

properties, hence is very likely centrally mediated (Hagbarth et al., 1983). Indeed,

magnetoencephalographic recordings from humans support a cortical source of the

piper rhythm (Brown et al., 1998). This rather universal feature has led some to

propose that the Piper rhythm is a means of binding multiple muscles involved

in the same movement together (Brown, 2000), which matches gamma-band EEG

coherence between co-activated cortical areas (Cassim et al., 2002). Alternately, the

Piper rhythm may just be an effective method for driving of motor units in the spinal

cord, or a non-causative artifact of other mechanisms (Hari and Salenius, 1999).

The Piper rhythm is well in the gamma band, which is enhanced by both STN

DBS and levodopa treatment, hence it is tempting to suppose that reinstating the

Piper rhythm is the mechanism of motor treatment. There is some evidence to

support this: as the Piper rhythm is particularly evident in isometric tasks, PD

patients in which this is decreased (Cassim et al., 2002) show difficulty in force

control, which is a symptom observed relatively early in the disease (Turner and

Desmurget, 2010). Indeed, PD patients with gamma EEG suppression are unable

to use either subconscious nor conscious load cues to normalize velocity when lifting

objects (Fellows et al., 2006).
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Like other theories behind oscillation, there is counterfactual evidence and further

complexities. High frequency stimulation of the STN would be expected to ameliorate

this through reinstatement of the Piper rhythm, but it does not: DBS may improve

dexterity and mobility, but it does not let a patient match force output to object

being manipulated. Quantitatively, STN DBS actually antagonizes uncontrolled and

excessive grip force (Fellows et al., 2006).

Inhibition & Conflict

Deep brain stimulation of the STN has a intricate, if loopy, relationship with impulse

control disorders (ICD). While DBS of the GPi treats tremor and akinesia of PD, it

does not allow for a reduction in the levodopa dosage (Bronstein et al., 2011); STN

DBS does allow for a reduction in the levodopa dosage, but the side-effects of STN

DBS often include ICD. It would seem that either you cannot win, or any (scalar)

adjustments along the dopamine dysregulation spectrum include both therapeutic

and harmful effects. Either way, both the STN and dopamine system seem involved

in both impulse and conflict inhibition.

Impulse control disorders are one of the worst side effects of levodopa or dopamine

agonist treatments in PD; they including punding 26, hobbyism, chronic gambling,

and hypersexuality (Rodriguez-Oroz et al., 2011). Also along the spectrum of dopamine

dysregulation disorders is attention-deficit disorder (ADD). These are often treated

with the amphetamine or ritalin, which block the monoamine transporter and in-

crease extracellular concentration of dopamine, allowing for heightened concentra-

tion: once you select a task, you stick with it for longer (Prescott et al., 2006). This

correlates well with undesirable ICD side effects of levodopa treatment in PD, albeit

here patients stick to the wrong task.

Yet casting behavior down to a single simplified axis is often inaccurate and

26 complex, prolonged, purposeless, stereotyped behavior often observed in methamphetamine users
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information-destroying. For example, STN DBS often causes weight gain in patients

(Chestek et al., 2007), which could be seen as a sign of inability to control consump-

tive urges. However, a more likely explanation is that patients can eat, or are more

’motivated at life’. Rats with a STN lesion show no increase in food, ethanol, or co-

caine consumption (Chestek et al., 2007), and rats with bilateral fiber-sparing lesion

of STN show enhanced persevereance at food-related tasks, again without increased

consumption (Baunez et al., 2002).

As mentioned above, lesion of STN in primates causes hemiballismus. The same

effect is not seen in rodents (Florio et al., 2001), possibly because they lack direct

projection from motor cortex to STN; instead, lesions induce specific deficits in dis-

crimination and delayed response. In a task where a rat had to detect a brief flash

of light in one of 5 locations, and subsequent a delay press a paddle and nose-poke

for water in the corresponding location, STN excitotoxic lesion increased premature

responses, but also perseverance at the paddle and reward locations (Baunez and

Robbins, 1997). Recordings from STN indicate neurons are active before switch-

ing from automatic to volitionally controlled saccades (Isoda and Hikosaka, 2008),

which is perhaps another form of inhibiton/habit control. Given observations that

lesions of the pedunculopontine nucleus (PPN) increases reaction time in conditioned

movements in rats, and that the PPN has strong reciprocal connection to the STN,

it was hypothesized that PPN lesion would alleviate premature responses in STN

lesioned rats. Furthermore, lesion of the PPN with STN intact normalizes STN

and SNr activity in 6 hydroxydopamine (6-OHDA) rat models of PD (Breit et al.,

2006). Yet PPN lesion did not reverse premature response, and rather increased

reaction time due to akinesia/bradykinesia (Florio et al., 2001). Again, casting be-

havior to a single axis of ’motivation’ often ignores the complexity and contingencies

of behavior-generation.

Observations of premature responses in rats in a delayed-response task following
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Figure 1.18: Conflict effect on decision times in normal, PD, and STN DBS pa-
tients. A, Mean reaction times for correct trials and B for error trials for 5 patient
states. C, D, within-subject differences in reaction times for correct and error trials.
From (Frank et al., 2007).

STN lesions led researchers to theorize that, if the STN has the same role in humans,

a similar deficit should be seen in patients being treated with STN DBS. There is

strong anatomical support for this hypothesis, as in primates there is a monosynaptic

pathway from the medial prefrontal cortex to the STN; breaking this decreases at-

tention and perseverance (Gubellini et al., 2009). Remarkably, this delayed-response

deficit was shown to be true by asking PD patients (and controls) to pick between

two targets in both high and low conflict situations, where high conflict situations

correspond to both choices being nearly equally good or bad. In normal individuals,

conflict situations slow reaction times, for the purposes of either obtaining more in-

formation or to examine the situation more closely. In comparison, in PD patients

with STN DBS, conflict situations decreased reaction time – see figure 1.18 (Frank

et al., 2007).

It is worth suggesting that this inability to control reaction strength may be
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related to an inability to control excessive grip force, another side-effect of STN

DBS, as noted in the Piper rhythm section. It may be that accelerated conflict

response is the cognitive equivalent of poor force scaling due to STN stimulation;

this would make an excellent experiment.

Alternately, cognitive effects may alternatively be the result of poor surgical tar-

geting – in some cases abnormal behavior and ICD is rectified by switching off the

ventral contact of the STN lead. This could be from either cognitive (medial-rostral)

STN stimulation, or stimulation of the neighboring pedunculopontine nucleus 27

(Rodriguez-Oroz et al., 2011). Indeed, excessive DBS stimulation current induces

mirthful, infectious laughter and hypomanic states (Krack et al., 2001), likely due to

current spread into the medial-rostral limbic STN.

1.6.4 Treatment of PD through DBS

As noted earlier in the introduction, electrical stimulation of nervous tissue has been

extant for a long time; electrical stimulation of the spinal cord has been used to treat

pain since the 1950’s. A large body of anatomical and pathophysiologial evidence

led to the rate hypothesis, as described earlier in this section. The rate hypothesis

in addition to observations of clinical hemiballismus led to the supposition that STN

lesion could be used to treat PD. This was verified to be true in monkeys rendered

parkinsonian by MPTP (Bergman et al., 1990). Shortly thereafter Beabid made the

fortuitous discovery that HFS to VIM suppressed tremor in PD patients (Benabid

et al., 1991), and that the treatment was safe (Pollak et al., 1993a). These two com-

bined indicated that the STN was likely a good target for DBS as well, which was

demonstrated true in 1993, again by Benabid and colleages (Pollak et al., 1993b).

STN DBS is remarkably effective at treating both tremor and akinesia (Figure 1.19,

27 Which is not a suitable DBS target – LFS of the PPN induces feelings of well being and modest
improvements in motor function, HFS appears to have no effect (Gubellini et al., 2009).
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Figure 1.19: Improvement in tremor score following bilateral STN DBS. From
(Krack et al., 1997).

and for reducing the need for large dosage of levodopa, which as mentioned have un-

fortunate ICD side-effects (Krack et al., 1997). The strong beneficial effects in « 80%

of patients outweighs the negative consequences of treatment, including cognitive de-

cline, speech difficulty, apathy (Bronstein et al., 2011), instability, gait disorders and

depression (Rodriguez-Oroz et al., 2005).

DBS is very much a case of technology leading science: though it was effective,

it took many years to develop a theory of why, and even yet some degree of mystery

remains. DBS seems to have the same effect as lesioning the whole structure, which

generally suggests that HFS enacts a reversible STN lesion. Recording and metabolic

measurements of the treated region is briskly counterfactual to this; DBS does not

silence the STN (Carlson et al., 2010).

Instead, evidence suggests that DBS effects an ’information-lesion’ whereby aber-

rant or pathological activity from the basal ganglia is blocked by highly regular

stimulus-locked discharge from STN projection neurons; this synchonized activity is

preferentially transmitted due to temporal summation (Mallet et al., 2008b). The

constant firing causes a null output of the globus pallidus which is then ignored by the

rich thalamic and cortical circuits that can hence ’take over’ (Israel and Bergman,

2008). The information-lesion theory is consistent with metabolic studies, which
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show that DBS decreases the activity of STN neurons and re-normalizes activity in

the SNr while decreasing activity in the GPe (Salin et al., 2002). It is also consis-

tent with studies showing that HFS increases synchrony in GPe/GPi (Hashimoto

et al., 2003) as required for a ’null output’ of the BG. However, in normal rats STN

HFS induces dyskinesias, unlike lesion28 (Hamani et al., 2004) which are blocked

by glutamate antagonists in the SNr (Boulet et al., 2006). This leads to a sliding-

scale information-lesion model: dopamine depletion decreases the susceptibility to

STN induced dyskinesias (Albin et al., 1989), or it could be that movement, even if

dyskinetic, happen to be better than no movement in PD.

This hypothesis is in turn called into question by a clever and careful decon-

struction of a 6-OHDA rat model of PD using optogenetic methods. While HFS

of the STN alleviated hemiparkinsonianism, inhibitory optical stimulation of STN

neurons had no therepeutic effect. This led the authors to propose that electrical

stimulation may act through glia in the STN; yet optically activating glia also failed

to have therepeutic effect, even though firing in the STN was silenced. Next excita-

tory optical stimulation was tried in the STN, which again elicited no effect. Finally

they targeted projection fibers using the Thy1 promoter in the STN with excitatory

optical stimulation, which had remarkable and reversible effect on the hemiparkin-

sonism. In alignment with electrical stimulation, high-frequency optical stimulation

had therapeutic effect, whereas low-frequency stimulation exacerbated symptoms.

Histology revealed that these Thy1 stimulated neurons were from M1 layer V; direct

optical stimulation in M1 had similar positive effects – see figure 1.20 (Gradinaru

et al., 2009).

The optogenetic results have support from controlled studies of microstimulation.

A general principle of electrical stimulation is that fibers of passage are stimulated

far before soma and dendrites (McIntyre et al., 2004) – the chronaxie, or duration of

28 STN lesion only induces hemiballismus in monkeys, not rats – this is not the same as a lesion
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Figure 1.20: Efficacy of M1 HF optical stimulation in rat model of PD. Hemi-
parkinsonian rats have bradykinesia / akinesia on one side, hence rotate around that
side. E, Unidirectional rotations are resolved by HFS but not LFS. E, head bias is
resolved and F, locomotion restored by HFS to M1. From (Gradinaru et al., 2009).

a stimulus at twice the threshold voltage needed to elicit a response, is 40 times lower

for axons than for cell bodies in the cerebrum. This has been verified through direct

current injection into soma vs. extracellular current (Nowak and Bullier, 1998a) and

NMDA dendrite/soma/proximal axon block controls (Nowak and Bullier, 1998b).

Thus the effect of STN DBS might be mediated through motor cortex projection

fibers in the STN.

Yet another alternative is that STN DBS may work through inadvertent stimu-

lation of fibers in the zona incerta (ZI), a highly diverse and well connected region

(Lin et al., 1990; Nicolelis et al., 1992) which lies ventral the thalamus and dorsal to

the rostral STN. Postmortem histology of one long-term DBS patient revealed that

efficacious contacts were in the ZI (Sun et al., 2008). Later direct testing of DBS

in the caudal (close to STN) ZI yielded excellent results – resting PD tremor was

improved by 94.8%, postural tremor by 88.2%, with good control of both proximal

and distal tremor, and without development of tolerance typical of thalamic DBS

(Plaha et al., 2008).

The role of DBS in changing beta oscillations is itself still quite contentious (Eu-

sebio and Brown, 2009), though there is some intraoperative evidence that STN DBS

attenuates beta band power in the LFP (Wingeier et al., 2006). Short-train HFS of
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the STN has been shown to decrease STN-cortex coherence for up to 25 s after ap-

plication (Weinberger et al., 2009). Perhaps the best support of this hypothesis is

the recent demonstration of the efficacy of closed-loop DBS. In this groundbreaking

study, neurons in M1 and GPi were recorded from MPTP-treated green monkeys,

and used to trigger short bursts of HFS stimulation on separate GPi electrodes after

a fixed 12.5 ms delay (Rosin et al., 2011). Oscillations in the GPi of the tremorgenic

monkeys were in the tremor and double-tremor band « 8 Hz, hence this delay cor-

responds to one full oscillation period; presumably this delay effects a zero in the

transfer function of the BG around the double-tremor frequency. Active closed-loop

DBS was superior to both HFS and time-shifted DBS controls; clinical devices sup-

porting this activity are presently in testing (Rouse et al., 2011), so deployment of

this improved technique may be imminent.

A safer and quite possibly more effective treatment yet may be to use trans-

verse dorsal column stimulation (DCS) to abolish aberrant oscillations in the motor

cortex and basal ganglia. Vagus nerve stimulation has been shown effective in treat-

ing epilepsy (DeGiorgio et al., 2006; Fanselow et al., 2000; George et al., 2000), and

indeed if STN DBS works by stimulating the projecting axons of motor neurons, stim-

ulating the pyramids should have exactly the same effect – only without the need for

a craniotomy. Romulo Fuentes and colleagues showed that DCS markedly increases

locomotion in both dopamine-deprived DAT-KO mice and 6-OHDA lesioned rats,

and effect was correlated with reversal of LFP oscillations in M1. Interestingly, in

sham-lesioned rats, DCS caused the animals to move less, implying that DCS does

not induce movement directly (Fuentes et al., 2009).

Treatment of Essential Tremor through DBS

In Chapter 2 over half of the patients undergoing stereotaxic surgery were being

treated for essential tremor (ET), a debilitating disease characterized by higher-
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frequency intention tremor rather than resting tremor as typical in PD (Deuschl and

Elble, 2000). ET is treated by HFS DBS to the ventral intermediate (Vim) / ventralis

oralis posterior (Vop) thalamus29. The latter is a relay from the cerebellum to the

motor cortex (Lenz et al., 2002), and the former is a relay to the supplementary

motor cortex (SMA) (Hyam et al., 2011).

While the full etiology in ET is unknown and appears to be largely idiopathic, a

prominent theory is that it results from cerebellar degeneration. Loss of cerebellar

function would force the patient to rely on visual information to stabilize limb po-

sition; as the visual system is much slower and less precise than the proprioceptive

system, this leads to phase-margin feedback instability and oscillations (Lenz et al.,

2002). Other theories posit that pathology in the inferior olive causes the tremors,

as consistent with frequency analysis indicating that the oscillations are centrally

generated, and that harmaline, which causes inhibition-rebound in olivary neurons,

exacerbates ET (Elble, 1996).

The symptoms of essential tremor overlap with Parkinson’s disease, and decision

on which subcortical structure is largely based on symptoms and physician / sur-

geon’s experience. Several of the patients in our cohort treated with DBS to VIM

had parkinsonian symptoms; we did not discriminate between each disease.

Along this line of argument, there is substantial evidence supporting the idea that

ET and PD are different sides of a common pathology. Vim/Vop are effective targets

for treating PD tremor as well (Elble, 1996). Lobules 9 and 10 of the cerebellum,

considered to be involved in vestibular control of posture (which are highly effected in

PD), stain strongly for dopamine (Barik and de Beaurepaire, 1996). Finally, Benabid

and colleagues showed, by comparing the relative efficacy of two sister hospitals

performing the same Vim DBS procedure with markedly different success rates, that

29 These are in Hassler nomenclature – there are unfortunately several conflicting nomenclatures
for the thalamus (Krack et al., 2002)
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the most successful surgeries were those that placed the electrodes closest to CM/Pf

thalamus – that is, the part of the thalamus that projects directly back to the

striatum, and not from the cerebellum (Caparros-Lefebvre et al., 1999).

1.6.5 Conclusions

DBS was discovered as much by accident as through the scientific method. DBS

has been used since the 1950s for localization of lesion targets; in the 1960’s was

discovered to alleviate tremor; 70s and 80s targeted at the cerebellum for treatment

movement disorders or epilepsy (Gubellini et al., 2009). This seems good cause for

encouraging further experimentation, despite a lack of perfect scientific consensus on

many of the scientific issues. Not discussed here are the many attempts and curing

the disease (rather than treating it) by preventing Lewy bodies, protein buildup, or

cell death, rather than treating it; nor are discussed treatment through stem cells

(Tropel et al., 2006) or gene therapy by inducing striatal expression of neuroprotective

neurturin (Eslamboli et al., 2005; Herzog et al., 2007; Kordower et al., 2000, 2006).

Though the neuturin studies are promising, they have yet to reach the efficacy of

DBS, and due to the fact that the protein stimulates growth, may induce tumors

(Marks et al., 2010).

Regarding synchrony and oscillations, my personal opinion is that they are se-

quelae from a general inability to modulate gain, which is one of the first symptoms

of PD. Oscillations are a very general property of feedback systems; the anatomy of

the basal ganglia clearly involves several feedback systems, and inability to modulate

motor program gain may implicitly cause multilevel oscillations. In Chapter 4 it is

described how simple changes to feedback weights enable active filters to become os-

cillators; likely it is the same within the basal ganglia. Controlling oscillations using

closed-loop record/stimulate DBS is a highly attractive therapy, yet given the large

variety of synchrony / oscillation results, system identification and pole-annulling
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will need to be performed on a per-patient basis.

That said, some consensus as to the function of the basal ganglia, and the method

of DBS is coming into focus. The basal ganglia seems tightly involved in learning,

consistent with the temporal-difference signal of dopamine, the loss of which causes

all sorts of idiopathic synchrony and oscillations, all which collectively ’jam’ or further

disorganize the cortex / motor system. DBS is effective by dramatically reducing

the entropy of the output of the basal ganglia, allowing the remaining motor system

to function normally. Stimulation and lesion are not without side-effect, notably

inhibition of habitual responses, but this is not because the substrate for habit is

in the basal ganglia – rather, it is the substrate for correcting and adding habits in

a contextualized, organized manner. It could be, by blocking / lesioning the basal

ganglia, patients are prevented from learning new things, but this does not matter

as by that age all the tasks of daily living – which is what neurologists assess to

determine treatment efficacy – are well rehearsed.

The data from Chapter 2 dates from 2006-2007; this section of the introduction

from 2012; scientific understanding of the BG in PD has advanced dramatically since

then. Had we known what we know now, an the experimental task would have been

entirely different; given the anachronism, the following data and analysis must be

taken within context.
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2

Population Analysis of Human Subcortical Neurons
in Parkinson’s Disease

2.1 Abstract

Deep brain stimulation (DBS) has expanded as an effective treatment for motor

disorders, in turn providing a valuable tool for monitoring spiking activity of subcor-

tical neurons. Until now, the potential utility of subcortical populations of neurons

to drive brain-machine interfaces (BMIs) and other neuroprosthetic applications is

not completely understood. During DBS procedures in 25 parkinsonian patients, we

recorded the single-unit activity of 274 ventral intermediate thalamus (VIM) neurons

and 123 subthalamic nucleus (STN) neurons. These subcortical neuronal ensemble

recordings were obtained while the patients performed a voluntary motor task that

required tracking of a visual target with a cursor controlled by opening and closing

the hand. Motor parameters were extracted from both VIM and STN ensembles

using BMI decoders. We observed that a substantial number of neurons in both

VIM and STN represented target onset, movement onset and direction, and hand

tremor via modulations in firing rate. Neurons in both areas were found to exhibit
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rhythmic oscillations and pairwise synchrony. Contrary to several previous studies,

however, we found no linear relationship between the frequency and spectral sharp-

ness of neuronal oscillations and those of the patients hand tremor. Furthermore,

the data indicate that oscillatory neurons and behaviorally tuned neurons form over-

lapping sets. We also observed the prevalence of increased local synchrony among

tremor-associated neurons. We suggest that multielectrode recordings from subcorti-

cal structures provide useful signals that can be utilized in a variety of BMI systems

for both motor control and the monitoring and suppression of pathological neural

activity.

2.2 Introduction

Interest in single-unit recordings from the human brain has grown in recent years,

especially in light of the development of brain-machine interfaces (BMIs) for neuro-

prosthetic control (Chapin et al., 1999; Fetz, 2007; Lebedev et al., 2011; Nicolelis,

2001; Nicolelis and Lebedev, 2009; Patil et al., 2004; Patil and Turner, 2008). Investi-

gators are currently pursuing many potential neuronal sources for BMI motor control

signals; invasive single-unit recordings from large ensembles of neurons offer the best

quality signals for BMI control(Lebedev and Nicolelis, 2006). While such recordings

have been performed in numerous animal studies, human ensemble recordings have

been utilized for BMI applications to a much lesser degree (Kennedy and Bakay,

1998; Kennedy et al., 2000, 2004; Patil et al., 2004; Quiroga et al., 2005).

Neurosurgical implantation of deep brain stimulation (DBS) electrodes is a com-

mon medical intervention for the treatment of Parkinsons disease (PD) and essential

tremor (ET) (Deuschl et al., 2006; Koller et al., 2001; Kumar et al., 2003; Parent

and Hazrati, 1995b; Rodriguez-Oroz et al., 2005). For PD patients, the subthalamic

nucleus (STN) is the typical implantation target, whereas the ventral intermediate

nucleus of thalamus (VIM) is targeted for ET patients. In healthy individuals, both
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structures are involved in many aspects of movement regulation and feedback control

(Guillery and Sherman, 2002; Parent and Hazrati, 1995b). The role for these struc-

tures in movement regulation persists even under pathological conditions; several

reports have delineated the activity of individual VIM/STN neurons during volun-

tary and passive movement, somatosensation, and motor imagery (Abosch et al.,

2002; Benazzouz et al., 2002; Lenz et al., 2002, 1990, 1994; Magarinos-Ascone et al.,

2000; Magnin et al., 2000; Raeva et al., 1999; Rodriguez-Oroz et al., 2005; Theo-

dosopoulos et al., 2003; Williams et al., 2005). In addition, several reports have

examined the single unit activity in these regions with respect to tremor (Amtage

et al., 2008; Brodkey et al., 2004; Hua and Lenz, 2005; Lenz et al., 2002, 1994, 1988;

Magarinos-Ascone et al., 2000; Magnin et al., 2000; Rodriguez-Oroz et al., 2001; Zirh

et al., 1998) and synchronous oscillations (Amirnovin et al., 2004; Levy et al., 2002,

2000). However, the number of simultaneously recorded cells in these studies was

low (typically no more than 2 neurons).

Previously, our laboratory demonstrated the feasibility of extracting motor con-

trol signals from neuronal ensembles recorded in VIM or STN during DBS surgery

(Patil et al., 2004). Subcortical ensemble recordings were utilized to decode task-

related modulations of the contralateral hand force during a one-dimensional target

tracking task. Demonstration of the feasibility of subcortical BMI was the primary

purpose, whereas analysis of neuronal population firing patterns was minimal. In this

study, we recorded from up to 23 subcortical neurons simultaneously to elucidate the

relationship between neuronal modulations, rhythmic oscillations, and neuronal syn-

chrony during a voluntary motor task. VIM and STN ensembles were recorded in 25

patients asked to produce hand movements to reach visual targets with a computer

cursor. Neurons from both subcortical areas were classified by oscillatory behav-

ior, tremor association, and tuning to target, movement, and direction. Neuronal

pairs were analyzed for evidence of functional synchrony over both short and long
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timescales. Finally, the neuronal ensembles were employed in an offline BMI decoder

to reconstruct cursor position.

2.3 Materials and Methods

Intraoperative recordings were conducted in 25 patients undergoing placement of

therapeutic DBS implants in either VIM or STN. All studies were approved by the

Duke University Institutional Review Board (IRB), and all participating patients

understood and signed all required consent forms. All statistical analyses were per-

formed using Matlab (MathWorks Inc.).

2.3.1 Patient characteristics and operative plan

All patients selected for this study underwent either VIM (N=14) or STN (N=11)

DBS electrode implantation surgery. Patients whose symptom presentation was dom-

inated primarily by medication-resistant tremor (either essential tremor or severe

parkinsonian tremor) were candidates for implantation in VIM, while patients with

severe PD (typically akinetic/rigid variant with on/off fluctuations and dyskinesia)

were candidates for implantation in STN. Both groups of patients were off their

medications prior to and during surgery. Patients first underwent Leksell frame

placement, followed by a magnetic resonance imaging (MRI) scan to localize the im-

plantation target. For VIM patients the target was typically estimated according to

anterior-posterior commissure (AC-PC) criteria, located approximately 5-6 mm in

front of the PC, on the AC-PC line with a lateral measure depending on the width of

the third ventricle (typically 12-15 mm). The first pass for VIM was the treatment

pass from a frontal burr hole, with the upper 5 mm of the recording track near the

border of ventralis oralis posterior (VOP) thalamus and VIM, and the lower 5 mm

in VIM and close to ventralis posterior caudalis (VPC) at the most posterior extent.

Typically, the upper 5 mm was the best for multineuron recordings, reflecting more
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of the slightly anterior motor thalamus. For STN patients the target was calculated

by indirect methods, based on the AC-PC and 1 mm axial cuts of spoiled gradient

recalled acquisition in the steady state (SPGR) imaging. The target was localized

at 11-12 mm from the midline, 2-3 mm posterior to the midpoint of the AC-PC line,

and 4 mm below the AC-PC line. Single-unit recordings were first performed to de-

fine the borders of the STN, according to standard electrophysiological criteria, with

the goal of attaining at least 5.5-6 mm of STN. Typically 2-3 passes were required.

For both targets, once single-unit recordings had been performed for localization, a

32-channel Pt/Ir microwire array (Ad-Tech Medical Instrument Corp., 35 µm each)

was passed to the appropriate depth via an outer cannula (Levy et al., 2000). After

allowing a few minutes for recordings to stabilize, the microwire array was slowly

advanced through the cannula. Once the number of clearly distinguishable single

units was maximized, the microwire array was left in place. At each electrode depth,

the patient was instructed to proceed with the voluntary motor task.

Following completion of the multichannel recording sessions, the microwire array

was removed prior to implantation of the DBS treatment electrodes.

2.3.2 Electrode arrays and electrophysiological recording

The 32-channel microwire recordings were performed with a Plexon MAP system

(Plexon Inc.). Since this study was performed intraoperatively during electrophysio-

logical mapping of the implantation sites, the recordings for each patient consisted of

one or more sessions (up to 8, mean=3.8), between which the electrode depths were

altered. For each session, single units were sorted offline using custom software devel-

oped in-house. Low-amplitude neuronal discharges that could not isolated as single

units were classified as multiunits. Figure 2.1a shows the sorted unit waveforms from

a single recording session.
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Figure 2.1: (a) Visualization of all
16 sorted units from Patient M
(VIM). All captured waveforms are
triggered using a linear threshold
at t=0 ms. For each unit, the vi-
sualized patch represents mean +
1 SD for all captured waveforms.
Multiple sorted units from the same
channel are shown in different col-
ors. Voltage amplitudes are nor-
malized for display and are there-
fore represented in arbitrary units.
(b) Diagram of the bidirectional
hand task. The patient uses open-
ing/closing of the hand to actu-
ate a one-dimensional cursor to-
ward randomly appearing targets.
(c) Example offline prediction of
hand/cursor position. Prediction
was obtained using a linear Kalman
filter with a 500 second training
period, from Patient M (VIM). 48
units (16 single units, 32 multiu-
nits) were included in the ensem-
ble. Position is given in normalized
units.

2.3.3 Voluntary motor task

Patients were placed in a supine, semi-sitting position in front of a computer monitor.

A 5DT Systems Data Glove 5 Ultra haptic glove (5DT Inc.) was placed over the

hand contralateral to the microelectrode array. This glove was used to measure

opening and closing of the hand, sampled at 1 kHz. The recorded signal was used to

control the position of a one-dimensional cursor on a video screen, placed directly in

front of the patient for high visibility. Patients were trained to open and close their

hand in order to acquire targets by moving the cursor into a box placed randomly

along a horizontal line (Fig 2.1b). The required target hold time was 200 ms. Once
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the target was acquired, the box disappeared for 300 ms before reappearing in a

new random position. During the preliminary training/calibration phase, the cursor

gain, offset, and target box size were manually adjusted by the experimenters to

compensate for variations in physical ability. During the recordings that followed,

the length of individual motor task sessions varied depending on electrophysiological

recording quality and the level of patient fatigue. Figure 2.1c shows a representative

snapshot of the motor task performed by an ET patient. Note the slight 5 Hz tremor

that occurred during target hold periods.

2.3.4 Neuronal tuning to target and movement

For all sorted single units and multiunits, peri-event time histograms (PETHs) of

neuronal activity (Awiszus, 1997) were generated using one of two event triggers: 1)

the appearance of a new target or 2) movement time. PETHs triggered on target

appearance were constructed using a window beginning 0.5 s before each event trigger

and ending 1.5 s after, whereas a symmetric 2 s window was used for PETHs triggered

on movement time. Movement time was defined as the moment at which the cursor

crossed the midpoint between initial cursor position (at target appearance) and the

endpoint target position. We chose this standard as a robust definition of movement

execution in light of patient tremor and occasional incorrect movements. Regardless

of reaction time, this event trigger was locked to movement, being in close proximity

to the point of maximum hand velocity prior to target acquisition. Trials with

anomalous movement times below 200 ms (premature movement) or greater than

1000 ms (inattention) were discarded. Only neurons with at least 50 valid target

acquisition trials were chosen for further analysis.

Neuronal tuning (modulation of firing rates correlated to an external parame-

ter) to either target or movement was determined by quantifying the deviation of

each PETH from a bootstrap distribution of PETHs generated by uncorrelated trig-
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gers. We calculated significance using the one-sample Kuiper’s test (Batschelet, 1981;

Kuiper, 1962; Zar, 1999), a non-parametric test related to the Kolmogorov-Smirnov

(K-S) test (Zar, 1999) but better suited for nonbiased PETH analysis. Unlike the

K-S test, Kuipers test is equally sensitive throughout the distribution, a useful prop-

erty in scenarios in which the locations of the peak modulations are not known a

priori. Variations of the K-S test have been employed previously in the significance

evaluation of neuronal PETHs . In this study we used Kuipers test to distinguish an

observed distribution of event-triggered spike times from the null hypothesis (uni-

form probability distribution). Kuipers test requires the calculation of the maximum

positive and negative deviations of the observed PETH cumulative distribution func-

tion (CDF) from a uniform distribution CDF (ramp function); the sum of these two

deviations is the statistic V:

V “ maxtCDFsample ´ CDFuniformu`maxtCDFuniform ´ CDFmaxu

The Kuiper statistic K is a normalized version of V, taking into account the size

of the observed sample size N, in this case the number of binned spikes:

K “ V pN
1
2 ` 0.155` 0.24N´ 1

2 q

To fully account for the non-Poisson effect of intra-trial spike correlation and dis-

tinguish the test statistic Kobs from the null hypothesis, we generated a bootstrapped

distribution of 1000 simulated Kuiper statistics (Ksim). Preliminary analysis de-

termined shuffling of spike timestamps to be an inappropriate control; the process

eliminates intra-trial spike correlations from the bootstrap distribution, thereby bias-

ing the evaluation of the observed distribution in favor in significance. Instead, each

value of Ksim was calculated using a PETH constructed from the original spike times-

tamps but processed using a distribution of randomized event triggers; the triggers
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are drawn uniformly from the recording session. For each sorted unit, the resulting

bootstrapped distribution of Ksim was used to produce a p-value:

p “
ptrials for whichKn

sim ą Kobsq

N ` 1

Units were deemed to be tuned to task events (target or movement onsets) using

the threshold p ă 0.05. In other words, these units exhibited temporal modulations

in firing rate relative to newly appearing targets and/or target-directed movements.

Tuning strength was defined as the z-score of the observed PETH relative to the

bootstrap distribution.

2.3.5 Directional tuning

The directional tuning of each sorted unit or multiunit was defined as the difference

in neuronal response for leftward versus rightward movements. Significance of direc-

tional tuning was determined using the two-sample Kuiper’s test. This test applied

the calculation of the maximum positive and negative deviations between the spike

CDFs for leftward and rightward movements:

V “ maxtCDFsample1 ´ CDFsample2u`maxtCDFsample2 ´ CDFsample1u

The Kuiper statistic K was calculated from V using the same equation as the

one-sample Kuipers test, but in the case of the two-sample Kuipers test the effective

sample size (Neff ) replaced N to account for the combined contributions of the

individual sample sizes N1 and N2:

Neff “
N1N2

N1 `N2
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Two PETHs triggered on movement time were generated one for leftward move-

ments, one for rightward movements. As with the one-sample Kuipers test, each

units Kobs statistic was compared to a bootstrapped distribution of Ksim generated

from randomized trigger times. Units were deemed to be directionally tuned using

the threshold p ă 0.05. Tuning strength was defined as the z-score of the observed

PETHs relative to the bootstrap distribution.

2.3.6 Tremor sensitivity

For all sorted single units, peri-event phase histograms (PEPHs) of neuronal activity

were generated using phase of the patients tremor as an event trigger, similar to the

approach of Lebedev et al. (1994). Tremor was determined from hand velocity, and

tremor periods within the range 100-2000 ms (0.5-10 Hz) were analyzed. To exclude

the impact of voluntary movements, hand velocity peaks occurring within 250 ms of a

movement trigger were excluded. Each tremor period was defined in units of phase,

with neuronal spike activity captured into 100 bins of equivalent phase aperture

(3.6 each). The zero phase for each cycle was defined by a local maximum in hand

velocity. Only sorted units with at least 500 valid tremor periods were chosen for

further analysis.

Each resulting PEPH was a measurement of neuronal firing rate with respect

to tremor phase. The one-sample Kuiper’s test, in addition to possessing uniform

sensitivity, is also rotationally invariant, meaning that the arbitrary choice of zero

phase has no effect on the assessment of statistical significance. For analysis of

tremor tuning, we generated a bootstrapped distribution of 1000 simulated Kuiper

statistics (Ksim); eachwas calculated using a PEPH constructed from trials whose

binned spike counts were circularly rotated by uniformly random phase offsets. For

each analyzed unit, the bootstrapped distribution was used to produce a p-value.

Units were deemed to be tremor associated (tuned) using the threshold p ă 0.05.
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Tuning strength was defined as the z-score of the observed PEPH relative to the

bootstrap distribution.

2.3.7 Oscillatory neurons

For all sorted units with at least 1000 extracted spikes, we used Welch’s method

(Oppenheim and Schafer, 1975) with 8 non-overlapping segments to determine the

spike train autopower spectral density. The power spectra were smoothed using a

0.5 Hz rectangular sliding window. For each unit the peak autopower frequency was

determined in the 1-25 Hz range; frequency content below 1 Hz was discarded for the

remainder of the analysis. For the peak frequency, we determined the signal-to-noise

ratio (SNR) by dividing peak power by the mean power (assessed from 1 Hz up to

the Nyquist frequency of 500 Hz). For the purpose of comparison, the same spectral

analysis was performed on hand acceleration traces for all recorded sessions.

Preliminary analysis indicated a functional separation of peak frequencies at

about 2.5 Hz. Units with a peak power frequency below 2.5 Hz tended to be dom-

inated by low frequency power and were therefore judged not to be sufficiently os-

cillatory in a physiologically relevant frequency range. As in previous studies , only

units with a peak SNR ą 2 were classified as oscillatory. Spectral sharpness, or

peakedness, of either the spike train or hand acceleration autopower spectra was

determined by calculating the maximum power concentrated in a 1 Hz band within

the physiologically relevant 2.5-7.5 Hz window. Peakedness was defined as the ratio

of the power in this band relative to the total power in the 1-25 Hz band.

In addition to established linear methods, we developed a nonlinear heterodyne

method for detecting synchronized activity between each neurons firing rate and as-

sociated hand velocity. This method was applied to all sorted units that fulfilled the

selection criteria for both target tuning analysis and oscillatory analysis. The spike

train and hand velocity recordings were first bandpass filtered (4th order Butter-
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worth) between 2-12 Hz, leaving both signals with negligible 0 Hz (DC) energy. The

two signals were then multiplied, yielding a third time series from which to extract

spectral energy. Because multiplication in the time domain is equivalent to convolu-

tion in the frequency domain (and vice versa), any synchronous frequency-modulated

components in both neuronal firing rate and hand velocity are transferred to DC.

The ratio of spectral energy (Eobs) from 0-0.125 Hz (signal) over that from 0.25-2

Hz (baseline) was considered as a metric of heterodyne synchrony between neuronal

activity and hand movement. To provide a control for this estimate, a bootstrap

distribution (Esim) was generated by shuffling spike timestamps 1000 times and re-

peating the above analysis. Since all low frequency information is filtered out prior to

multiplication, shuffling timestamps was determined to be a suitable control. For all

single units, the resulting bootstrapped distribution was used to produce a p-value.

Units were deemed to be heterodyne-tuned to tremor using the threshold p ă 0.05.

Tuning strength was defined as the z-score of the observed spectra relative to the

bootstrap distribution.

2.3.8 Neuronal synchrony

The use of simultaneous ensemble recordings allows for the analysis of pairwise syn-

chrony between neurons. To determine the statistical significance of the synchrony

between two neurons, we employed the bootstrap procedure introduced by Ventura

et al. (Ventura et al., 2005a). This procedure requires the calculation:

ζptq “
P 12pt, tq

P 1ptqP 2ptq

ζptq represents the ratio between the observed probability of near-simultaneous

firing of two neurons and the predicted joint probability assuming statistical inde-

pendence. ζptq can be interpreted as the excess probability ratio of the observed
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result with respect to statistical independence.

In this study P 1ptq, P 2ptq, and P 12pt, tq were calculated for all pairs of simultane-

ously recorded sorted units, using either target or movement as an event trigger. In

this context, P 1ptq and P 2ptq are effectively normalized PETHs, while P 12pt, tq is the

diagonal of a normalized two-dimensional PETH, with each axis corresponding to

one of the two recorded neurons. As in the analysis of single unit behavioral tuning,

we used a window beginning 0.5 s before and ending 1.5 s after each target trigger.

For movement triggering, we used a window beginning 1 s before and ending 1 s after

each event trigger. Only neuron pairs with at least 50 valid triggers were chosen for

further analysis.

The two-dimensional PETH was smoothed with a two-dimensional Gaussian ker-

nel (σ=20 ms), while P 1ptq and P 2ptq were smoothed with a one-dimensional Gaus-

sian kernel (σ=20 ms). After smoothing, the two-dimensional PETH was compressed

into 10 ms square bins, after which it was diagonalized to form P 12pt, tq. P 1ptq and

P 2ptq were simply compressed into 10 ms bins. The excess probability ratio ζptq

was then calculated using these constituent probability densities. Following Ventura

et al. (Ventura et al., 2005a), 1000 bootstrap simulations of ζptq were produced by

using P 1ptq and P 2ptq to generate Poisson spike trains. The result of the bootstrap-

ping procedure is 1000 ζnptq curves, each corresponding to an observed probability

ratio under the null hypothesis statistical independence of the two neurons. For

each bootstrap simulation we calculated the statistic Gsim, which was defined as the

largest area of any contiguous portion of ζnptq that exceeds the two-tailed 95% con-

fidence bands of the ζnptq bootstrapped distribution. The bootstrapped distribution

was used to produce a p-value, and neuron pairs were deemed to be significantly

synchronous using the threshold p ă 0.05.

Due to nonstationarity in mean firing rates, the ζptq approach to synchrony anal-

ysis is largely a measure of long timescale, correlated modulations in the session-wide
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firing rate envelope. Rather than correct for trial-to-trial variability as in Ventura et

al. (Ventura et al., 2005b), we chose instead to exploit this measure of long timescale

neuronal synchrony. For a separate short timescale analysis of neuronal synchrony,

we analyzed the cross-correlation peak between pairs of spike trains. Pairs were ana-

lyzed if they each contained at least 100 spikes and corresponded to a session with at

least 50 targets. The cross-correlation coefficient was first calculated for the observed

spike trains of the two neurons, then smoothed using a 5 ms rectangular sliding win-

dow. The observed test statistic Cobs was defined as the peak coefficient in the +10

ms time lag range. Bootstrap simulations (n=1000) of the two spike trains were gen-

erated by convolving the spike trains with a Gaussian kernel (ρ=250 ms) and then

generating new spike trains via an inhomogeneous Poisson process. The smoothing

filter was used to extinguish correlated high frequency content in the bootstrap dis-

tribution, while maintaining low frequency correlation in mean firing rate. Each of

these bootstrap simulations was used to produce a cross-correlation coefficient Csim.

The bootstrapped distribution was used to produce a p-value, and neuron pairs were

deemed to be significantly synchronous using the threshold p ă 0.05.

To visualize the time dependency of pairwise synchrony, we generated joint peri-

stimulus time histograms (JPSTHs) for neuron pairs, as originally presented by Aert-

sen et al. (Aertsen et al., 1989). Our JPSTHs were adjusted by subtracting the shift

predictor histogram and normalizing (bin-by-bin) by the standard deviation, a pro-

cedure referred to by Aertsen as the ”true normalization” of the JPSTH.

2.3.9 Efficacy of neuronal recordings for kinematic predictions

BMI algorithms were applied to subcortical neuronal populations to extract behav-

ioral parameters. Several algorithms were tested, including the linear Kalman filter,

unscented Kalman filter, and the Wiener filter. Figure 2.1c shows an example offline

prediction for a 30 s window of task performance.
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Since all three algorithms achieved the same approximate fidelity in preliminary

testing, we chose the Wiener filter for further analysis due to its computational sim-

plicity and extensive presence in the BMI literature (Carmena et al., 2003; Patil

et al., 2004; Wessberg et al., 2000). Individual Wiener filters were fit by binning

neuronal data into 100 ms time slices with 10 causal lags and regressing against

recorded hand position. Model training was performed by the random selection of

50% of these time slices; predictions were then made on a distinct random 25%.

This process was repeated with 100 draws of fit and predict time slices. Correlation

coefficient (R) between predicted hand position and actual hand position was mea-

sured for each of the draws; the mean correlation coefficient was reported for each

recording session. Offline prediction results are reported for all sessions with at least

50 presented targets.

We generated neuron dropping curves for selected sessions (Wessberg et al., 2000)

by drawing random subsets from the neuronal ensemble. For each subset ensemble

size N, we performed 1000 draws of random ensemble subset and Wiener filter fit

and prediction; the R values for these draws were averaged to form a smooth neuron

dropping curve. Following Wessberg et al. (2000), the resulting curve was then fit

to the following hyperbolic function to extrapolate the performance results to larger

ensemble sizes:

R2
“

cN

1` cN

2.4 Results

A total of 25 DBS implantation patients were examined. In these patients we simul-

taneously recorded from ensembles of up to 23 well-isolated neurons from either VIM

or STN, depending on the site of electrode location. Recording sessions varied sub-
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stantially in terms of duration and target acquisition rate, as limited by individual

patient pathology and motivation. Neurons from these subcortical areas were classi-

fied by oscillatory behavior and tuning to target, movement, direction, and tremor.

Neuronal pairs were analyzed for evidence of functional synchrony over both short

and long timescales. Finally, the neuronal ensembles were employed in an offline

BMI decoder to predict cursor position.

STN cells (N=168) exhibited a higher (p ă 0.05, two-tailed t-test) mean firing

rate than VIM cells (N=83): 15.8 + 1.9 Hz and 11.7 + 1.0 Hz, respectively (mean +

1 SE in both cases). In both subcortical areas we found substantial populations of

oscillatory neurons, as well as neurons strongly tuned to target, movement, direction,

and tremor. At the ensemble level, the vast majority of analyzed cell pairs were found

to exhibit functional synchrony. Furthermore, neurons in both subcortical areas

tended to show tuning to multiple parameters (Table 2.1) rather than belonging to

disjoint sets. For example, the number of VIM cells were tuned to both target and

tremor was higher than would be expected under statistical independence (two-tailed

Fishers exact test, p ă 0.05).

2.4.1 Neuronal tuning to target and movement

Both VIM and STN neurons represented target appearance and movement onset

(Table 2.2). Of all tested single units tested, 29.2% of 168 VIM cells and 22.9% of

83 STN cells were found to be tuned to target appearance. Both of these percent-

ages represent significant populations (Binomial test, p ăă 0.001 in both cases).

Figure 2.2a shows example PETHs for three highly responsive neurons.

Because of the additional reaction-time criterion for analyzing units for movement

tuning, fewer single units were analyzed. Of these, 34.7% of 75 VIM cells and 42.3%

of 26 STN cells were found to be tuned to movement. Both of these percentages
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Table 2.2: Behavioral tuning of subcortical neurons

Behavioral Parameter Unit type Area # Units # Tuned
Target Single VIM 168 49** (29.2%)
Target Single STN 83 19** (22.9%)
Target Multi Both 753 87** (11.6%)

Movement Single VIM 75 26** (34.7%)
Movement Single STN 26 11** (42.3%)
Movement Multi Both 414 48** (11.6%)
Direction Single VIM 75 19** (25.3%)
Direction Single STN 26 5* (19.2%)
Direction Multi Both 414 36* (8.7%)

represent statistically significant populations (Binomial test, p ăă 0.001 in both

cases). Figure 2.2b shows example PETHs for three highly responsive neurons. We

found a strong positive correlation between the strength of target appearance tuning

and that of movement tuning, for both VIM and STN cells. When controlling for

the number of session trials, target tuning strength significantly predicted movement

tuning strength (β “ 0.70, p ăă 0.001 for VIM; β “ 0.71, p ăă 0.001 for STN).

This result is consistent with Table 2.1, which indicates that a larger-than-expected

number of neurons in both subcortical areas were tuned to both target and movement.

A portion of the correlation between target tuning and movement tuning may

be explained by a tight temporal offset between target appearance and movement

time. However, visual inspection of some tuned units indicated a clear decoupling of

the neural encoding of target appearance and movement. Sorted raster plots from

example neurons are shown in Figure 2.3a,c. From these, we derived the color maps

in Figure 2.3b,d, each showing two clear bands of increased spike density. In both

panels, the vertical bands are independent of movement time and are clearly related

to target appearance (about 450 ms post-appearance). The diagonal bands have a

near-unity slope, indicating a clear time-locked relationship between neuronal activ-

ity and movement time. For both units, the second peak in firing rate occurred about

300 ms after the defined movement time. From these data it can be concluded that
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Figure 2.2: Example PETHs, all 2 s
long. A Strongly tuned units to tar-
get appearance; (i) VIM cell, Patient
M, 465 trials; (ii) VIM cell, Patient
M, 375 trials; (iii) STN cell, Patient
H, 310 trials. B Strongly tuned units
to movement time; (i) VIM cell, Pa-
tient M, 390 trials; (ii) VIM cell, Pa-
tient M, 310 trials; (iii) STN cell, Pa-
tient H, 201 trials. C Strongly direc-
tion tuned units; (i) STN cell, Pa-
tient H, 201 trials; (ii) VIM cell, Pa-
tient M, 416 trials; (iii) VIM cell, Pa-
tient M, 394 trials. For A, reported
time is relative to target appearance.
For B and C, reported time is rel-
ative to movement time. All plots
were smoothed using a Gaussian ker-
nel, σ=40 ms.

these neurons were tuned to both target appearance and movement; they modulated

their firing rates in relation to both events.

Modest differences were seen in the aggregate response patterns of VIM and STN

cells classified as responsive to either target or movement (Fig. 2.4). Both cell types

exhibited a mean response that peaked following target appearance (Fig. 2.4A);

100



100

200

300

400

T
ri

al
 #

100

500

700
M

ov
em

en
t t

im
e 

(m
s)

0 500 1000 1500

A C

B

Time (ms)

D

0 500 1000 1500

Figure 2.3: Separation between single unit response to target appearance and
movement time. Time along the X axis is relative to target appearance. Panels A
and C show spike raster plots relative to target appearance, with individual trials
sorted by movement time (red circles). Panels B and D show smoothed color plots
for the same two units as A and C, using the relative timing of all spikes and the
movement time of their corresponding trials. The dashed line (unity slope) depicts
movement time. For generation of the color plots, the data were smoothed using
a two-dimensional Gaussian kernel, with σ=20 ms along the X axis and σ=40 ms
along the Y axis. Both units are VIM cells from Patient M.

STN cells peaked later on average. The mean response of the VIM cells peaked

immediately before movement while that of the STN cells peaked concurrently with

movement (Fig. 2.4B). For both aggregates, the differences between the mean VIM

and STN responses were statistically significant (χ2 test, p ăă 0.001). However,

similar proportions of VIM and STN cells were tuned to target appearance; the

same was also true for movement tuning (two-tailed Fishers exact test, p ą 0.05 in

both cases).

2.4.2 Directional tuning

Another metric of interest for the behavioral responsiveness of subcortical neurons

was directional tuning; Table 2.2 gives the directional tuning results for both single
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Figure 2.4: Mean normalized PETHs for all responsive units (pă0.05) from both
subcortical areas using two event triggers: A target appearance, and B movement
time. Reported time is relative to the event trigger. Prior to aggregation, individual
PETHs were convolved with a Gaussian kernel (σ=40 ms) and normalized relative
to mean firing rate. For both panels, the differences between the mean VIM and
STN responses were statistically significant (χ2 test, p ăă 0.001).

units and multiunits. Of all tested single units, 25.3% of 75 VIM cells and 19.2%

of 26 STN cells were found to exhibit directional tuning. Both of these percentages

represent statistically significant populations (Binomial test, p ă 0.001 for VIM,

p ă 0.01 for STN). Figure 2.2c shows example PETHs for three strongly tuned

neurons. Similar proportions of VIM and STN cells were tuned to direction (two-

tailed Fishers exact test, p ą 0.05).

Despite the clear separation in the neuronal response to leftward and rightward

movements, note the transient regions of convergence that occurred in Figure 2.2c.

In Figure 2.2c(iii), for example, the neuronal responses to each direction converged

just prior to movement. For many tuned neurons in both VIM and STN, the degree

of directional modulation varied throughout the temporal window.

For both VIM and STN cells, we found strong positive correlations between

directional tuning strength and the strength of both target tuning and movement
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tuning. When controlling for the number of session trials, target tuning strength

significantly predicted directional tuning strength (β “ 0.16, p ă 0.05 for VIM;

β “ 0.38, p ă 0.01 for STN). Similarly, movement tuning strength significantly

predicted directional tuning strength (β “ 0.24, p ă 0.01 for VIM; β “ 0.43, p ă 0.05

for STN). The latter finding is consistent with the VIM pairwise classification result

in Table 2.1.

2.4.3 Properties of multiunits

From Table 2.2, it can be seen that a significant population of analyzed multiunits

were tuned to target, movement, and direction (Binomial test, p ă 0.01 in all cases).

A substantial number of these tuned multiunits were found on the same channel

as tuned sorted units. Furthermore, when controlling for the number of session

trials, the target tuning strength of single units significantly predicted the target

tuning strength of same-channel multiunits (β “ 0.18, p ă 0.01). This suggests

the presence of correlated tuning in nearby neurons. Thus, a substantial amount of

encoded information has been demonstrated in subcortical multiunits, arguing for

the inclusion of these multiunits in future BMI decoding algorithms.

2.4.4 Tremor sensitivity

In order to identify potentially pathological neurons within the recorded subcortical

populations, we analyzed the tremor sensitivity of single units using the peri-event

phase histogram (PEPH) approach; the results are given in Table 2.3. Of all single

units tested, 12.4% of 169 VIM cells and 15.9% of 82 STN cells were found to be

correlated to observable hand tremor. Both of these percentages represent statis-

tically significant populations (Binomial test, p ă 0.001 in both cases). Figure 2.5

shows example PEPHs for three strongly tremor-sensitive neurons. These results

demonstrate that for highly tuned units, the dependence of spike rate on tremor
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Table 2.3: Tremor tuning of subcortical neurons

Area Unit type # Units # Tuned
VIM Single 169 21** (12.4%)
STN Single 82 13** (15.9%)

phase remained stable throughout the recording session (Fig. 2.5a,b,c), even if mean

firing rate varied substantially Fig. 2.5a,c. Similar proportions of VIM and STN cells

were tuned to tremor (two-tailed Fishers exact test, p ą 0.05).
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Figure 2.5: Example peri-event phase histograms (PEPHs) triggered on hand
tremor phase, for strongly tremor tuned units. A VIM cell, Patient M, 4478 tremor
periods. B VIM cell, Patient M, 1259 tremor periods. C VIM cell, Patient M, 4642
tremor periods. Zero phase is aligned to local peaks in hand velocity. All panels
show individual PEPHs for each temporal quarter of their respective sessions, over-
laid with the aggregate PEPH for the session as a whole (ALL). All plots in this
figure are smoothed using a Gaussian kernel, σ “ 15˝.

For VIM cells (but not STN cells), we found a positive correlation between the

strength of tremor tuning and that of directional tuning. When controlling for the

number of session trials, directional tuning strength significantly predicted tremor

tuning (β “ 0.34, p ă 0.05). However, we found no relationship between tremor

tuning and either undirected target or movement tuning (p ą 0.05 for all cases).
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Table 2.4: Oscillatory units

Area Unit type # Units # Tuned
VIM Single 274 59 (21.5%)
STN Single 123 22 (17.9%)

2.4.5 Oscillatory behavior

To explore neuronal oscillations in VIM and STN and their relationship to patient

pathology, we inspected the autopower spectra of single unit spike trains for strong

frequency peaks. Of all tested single units, the distribution of peak frequencies

showed a clear bimodal distribution with a border between low and high-frequency

oscillations at about 2.5 Hz (Fig. 2.6). This was particularly true for neurons ex-

hibiting peak SNR ą 2. The classification results are shown in Table 2.4; 21.5% of

274 VIM cells and 17.9% of 123 STN cells were classified as oscillatory. No difference

was seen in the proportions of oscillatory VIM and STN cells (two-tailed Fishers

exact test, p ą 0.05). Figure 2.7 shows example interspike interval (ISI) plots for

three highly oscillatory cells. Note that all three ISI histograms exhibit some degree

of bimodality, indicative of periodic bursting behavior.

Figure 2.8A shows the smoothed autopower spectra of spike trains for all ana-

lyzed single units, with each individually normalized horizontal trace corresponding

to a distinct unit. From this figure, one can visually identify some of the highly os-

cillatory units as well as observe the congruity between multiple units from the same

patient. The difference between the mean normalized spectra for VIM and STN cells

(Fig. 2.8B) is statistically significant (χ2 test, p ăă 0.001). From Figure 2.8B, it is

clear that STN cells tended to concentrate power at a lower frequency (3 Hz rather

than 4 Hz).

The pairwise classification results in Table 2.1 reject the notion that oscillatory

neurons and behaviorally tuned neurons form disjoint sets. Furthermore, we found

no relationship between spike autopower peakedness and the strength of any of the
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Figure 2.7: Example ISI histograms for highly oscillatory neurons. A VIM cell,
Patient W. B STN cell, Patient V. C VIM cell, Patient J.
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tient and recording area. The col-
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ized prior to aggregation. Each of
the many dashed traces represents a
bootstrap simulation in which only
half of all analyzed units are ag-
gregated. The difference between
the mean VIM and STN spectra
is statistically significant (χ2 test,
p ăă 0.001).

three (target, movement, direction) behavioral tuning metrics (p ą 0.05 for all cases,

for both VIM and STN). The lack of a clear anticorrelation suggests that the sets of

behavioral neurons and oscillatory neurons are far from disjoint.

Our next analysis attempted to uncover a relationship between strong oscillatory

neuronal patterns and observable hand tremor. However, we did not find any clear

relationship. Linear regression analysis revealed no relationship between peak fre-

quency (2.5-7.5 Hz range) of spike train autopower spectra and corresponding hand

acceleration autopower spectra (p ą 0.05 for both VIM and STN). Furthermore,

no relationship was found between the sharpness of the two spectra (p ą 0.05 for

both VIM and STN). Figure 2.9 shows overlaid spectra for the spike train autopower
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and hand acceleration autopower of three highly oscillatory units. For all three cells

(representative of the population as a whole), the peak frequencies do not coincide.

On the other hand, we did find a marginally significant (β=0.24, p=0.055) correla-

tion between spike autopower peakedness and tremor tuning strength for VIM cells

(p ą 0.1 for STN cells). These findings call into question the presumed causal lin-

ear relationship between the two, suggesting the possibility of an elusive nonlinear

relationship.
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Figure 2.9: Comparison of spike train autopower and hand acceleration autopower
for three highly oscillatory units. A VIM cell, Patient W. B STN cell, Patient V. C
VIM cell, Patient J. Note that for all three cells, peak frequency does not coincide.

Our heterodyne decoding analysis further explored this relationship by applying

a nonlinear frequency shifting approach to the autopower spectra. Of 239 analyzed

single units, 13.3% of VIM cells and 17.3% of STN cells were found to be tremor

associated via heterodyne decoding (Table 2.5). Both of these percentages represent

statistically significant populations (Binomial test, p ăă 0.001), but the difference

between them is not significant (two-tailed Fishers exact test, p ą 0.05).

Nonlinear heterodyne encoding, in which the central spectral frequency is shifted,
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Table 2.5: Heterodyne tremor tuning

Area Unit type # Units # Tuned
VIM Single 158 21** (13.3%)
STN Single 81 14** (17.3%)

may serve to explain the relationship between the oscillatory activity of neurons and

observed tremor. Note the similarity in the proportions of tuned neurons in Tables

2.3 and 2.5. Furthermore, in VIM cells we found a strong positive correlation be-

tween tremor tuning strength identified using PEPHs and heterodyne tremor tuning

strength (β “ 0.31, p ă 0.001). This relationship was marginally significant in STN

cells (β “ 0.28, p “ 0.086). These findings are consistent with the pairwise classi-

fication results in Table 2.1, which for VIM cells indicated a higher than expected

joint classification for the two tremor tuning analyses.

2.4.6 Neuronal synchrony

We analyzed neuronal synchrony in pairs of sorted units and investigated how its

prevalence and time course varied across subcortical areas; the results are given in

Table 2.6. Using the long timescale (ζ) approach, triggered on target appearance,

79.3% of VIM pairs and 90.3% of STN pairs were found to be synchronous. Movement

triggering produced similar results: 74.0% of VIM pairs and 91.2% of STN pairs were

found be synchronous. All four of these percentages represent significant populations

(Binomial test, p ăă 0.001 for all cases). Figure 2.10 shows example ζptq plots for

three highly synchronous neuronal pairs.

Using the short timescale cross-correlation approach, 43.0% of VIM pairs and

25.8% of STN pairs were found to be significantly synchronous. Both of these per-

centages represent significant populations (Binomial test, p ăă 0.001 for both cases).

Figure 2.11a shows example cross-correlation plots for three highly synchronous pairs,

while Figure 2.11b shows the normalized JPSTH for the same three pairs. Whereas
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Table 2.6: Pairwise neuronal synchrony

Parameter Area # Analyzed Pairs # Synchronous
ζptq - Target VIM 828 657** (79.3%)
ζptq - Target STN 371 337** (90.8%)

ζptq - Movement VIM 411 304** (74.0%)
ζptq - Movement STN 34 31** (91.2%)
Cross-correlation VIM 1648 708** (43.0%)
Cross-correlation STN 693 179** (25.8%)

A B C

Figure 2.10: Example plots of excess joint probability ratio ζptq for three highly
synchronous neuron pairs. A Pair of STN cells, Patient V. B Pair of VIM cells,
Patient I. C Pair of STN cells, Patient H. For all three panels, the results of boot-
strapped ζptq simulations are shown, with mean indicated in blue and 95% confidence
intervals (CI) indicated in red. Reported time is relative to target appearance.

Figure 2.11b(i,ii) clearly show temporal synchronization along the diagonal (and off-

diagonals), the same result is not visually discernible in Figure 2.11b(iii).

We found highly significant differences between the VIM and STN in terms of the

proportions of synchronous pairs. Using the long timescale ζptq approach, a signifi-

cantly higher proportion of STN pairs were synchronous than VIM pairs, triggered

on either target (two-tailed Fishers exact test, p ăă 0.001) or movement (two-tailed

Fishers exact test, p ă 0.05). Interestingly, the result is reversed when considering

the short timescale (cross-correlation) approach. Over a shorter timescale, a signifi-
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Figure 2.11: A Example plots of cross-correlation coefficient for three highly syn-
chronously neuron pairs. Bootstrapped simulations of coefficient shown in red. B
Example normalized JPSTHs for the same three neuron pairs. (i) Pair of VIM cells,
Patient I; (ii) Pair of STN cells, Patient H; (iii) Pair of VIM cells, Patient Q. For A,
reported time is relative to target appearance.

cantly higher proportion of VIM pairs were synchronous than STN pairs (two-tailed

Fishers exact test, p ăă 0.001).

It has been reported that the level of tremor in parkinsonian patients is posi-

tively correlated to the degree of pairwise synchrony among STN cells . To test the

relationship between tremor tuning and local synchrony, we compared the subpopu-

lation of both VIM and STN neurons which were synchronous with at least one other

neuron in their respective ensembles (cross-correlation method) to the subpopulation

of neurons tuned to hand tremor (PEPH method). Only neurons fulfilling the cri-

teria of both individual analyses were considered. The results are shown in Table
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Table 2.7: Comparison of synchrony (cross-correlation method) and tremor tuning
(PEPH method)

Tremor tuning (PEPH method) Synchronized to ą1 unit Not synchronized
Tremor tuned 28 0

Not tremor tuned 137 30

2.7; the observed proportions are significantly different (two-tailed Fishers exact test,

p ă 0.01). Notably, only units synchronized to at least one other unit were tuned to

tremor, whereas no unsynchronized units were tuned to tremor.

2.4.7 Efficacy of neuronal recordings for kinematic predictions

We performed offline predictions of cursor motion using the recorded ensembles;

the correlation coefficient (mean + 1.96 SE) for each of the sessions is shown in

Figure 2.12. Although the predictions varied greatly across sessions and patients,

the results compared favorably with the predictive power reported by Patil et al.

(2004). The best session for each subcortical area (VIM, STN) was chosen for further

analysis, and neuron dropping curves were generated for these two sessions and fitted

to a hyperbolic function . Extrapolation of the hyperbolic fit produced estimates of

the approximate ensemble sizes required to achieve R2=0.9: 106 VIM neurons or 397

STN neurons.

2.5 Discussion

In this study we analyzed discharges of populations of single neurons recorded in

human VIM and STN while patients performed visually guided hand movements.

Our results provided further support to our previous proposition that subcortical

neurons, if recorded in sufficient quantities, could drive a motor BMI that performs

upper-limb movement tasks (Patil et al., 2004). Moreover, we have elucidated char-

acteristics of the activity of subcortical neurons that reflect their representation of

motor parameters, as well as characteristics that may be related to pathological states
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Figure 2.12: Dependence of offline BMI predictions on neuron ensemble size. Each
data point corresponds to a recording session. Correlation coefficient (R) is indicated
as mean + 1.96 SE. The best session for each subcortical area (VIM, STN) was chosen
for further analysis. Neuron dropping curves are shown for each of these sessions and
fitted to a hyperbolic function (Wessberg et al., 2000). Extrapolation calculations
are presented in Results.

tremor sensitivity, oscillations, and pairwise synchrony. Based on these results, we

suggest that BMI technology could be used not only to reproduce motor behaviors

from subcortical activity, but also to monitor and correct potentially pathological

activity such as oscillatory firing and elevated levels of local network synchrony.

2.5.1 Subcortical encoding of behavior

Neurons in both subcortical areas (VIM and STN) were found to encode features

of patient motor behavior, both voluntary (hand opening/closing) and involuntary

(tremor). With respect to voluntary behavior, a substantial number of neurons were

found to be tuned to target appearance, movement onset, and movement direction

(Table 2.2). This is remarkable given the simplicity of the target acquisition task

and the few hand muscles required for performing it, likely indicating that neurons

in both structures are broadly tuned across multiple modalities and muscle groups.
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This observation is consistent with previous studies, since it has been reported that

STN neurons have large receptive fields that respond to multiple joints (Abosch

et al., 2002), with 40% of STN cells tuned to movement in a simple two-dimensional

joystick task (Williams et al., 2005). Theodosopoulous et al. found that 42% of cells

within the STN responded to passive movement of either arm or leg, and of these,

25% responded to multiple joint movements (Theodosopoulos et al., 2003). Lenz

et al. reported that 51% of VIM neurons were tuned to sensory stimuli, with an

overlapping 10% of these cells tuned to volitional movements (Lenz et al., 1990).

In some neurons, we were able to clearly visualize the bimodal encoding of target

and movement (Fig. 2.3), demonstrating what appears to be linear superposition of

two independent rate codes. Furthermore, we observed a significant overlap between

tuning to target appearance and to movement onset. Additionally, in both subcorti-

cal areas, directional tuning strength was positively correlated to movement tuning

strength, indicating that individual neurons encoded both parameters by exhibiting

both common mode and differential activity relative to movement onset (Fig. 2.2).

Thus, neurons from both subcortical areas exhibited a distributed encoding of task

parameters.

Differences in the relative lags for VIM and STN neuronal activation (Fig. 2.4)

likely reflect the position of thalamic and STN circuitry in the network hierarchy of

motor control (Gradinaru et al., 2009; Guillery and Sherman, 2002; Marsden et al.,

2001). The motor regions of thalamus are more involved with intention, with signals

arriving prior to motor cortex activation, whereas the collaterals from motor cortex

to STN deliver signals at the time of motor activation. This neuroanatomical knowl-

edge, along with the observed multimodality in task parameter encoding, should

instruct the future development of custom BMI algorithms for subcortical neurons.

Our analysis of involuntary motor activity (tremor) yielded significant popula-

tions of tremor tuned cells (12.4% for VIM, 15.9% for STN); phase histograms demon-
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strate clear phase-locking between neuronal activity and tremor periods (Fig. 2.5).

However, these results do not distinguish whether these tremor tuned neurons are

involved in a pathological mechanism that causes tremor or merely reflect sensory

signals indicative of tremor. There is a large range in the published literature with

regard to the prevalence of tremor-related cells in these subcortical areas; our STN

result falls within this range while our VIM result falls below it. For STN, reported

percentages are 11%, 52%, and 19%, (Amtage et al., 2008; Magarinos-Ascone et al.,

2000; Rodriguez-Oroz et al., 2001), respectively. For VIM, reported percentages are

34%, 35.6%, and 51%, (Hua and Lenz, 2005; Lenz et al., 1988; Zirh et al., 1998), re-

spectively. Disparities are most likely due to differences in recording parameters and

classification methodology. With respect to the latter, these researchers classified

tremor tuning using linear coherence between spike train and recorded electromyo-

grams (EMGs) rather than end position.

We found overlap between tremor tuned neurons and those tuned to parameters

of voluntary behavior (Table 2.1), and we observed a positive correlation between

tremor tuning strength and directional tuning strength (VIM cells only). These

results are consistent with Magarios-Ascone et al (Magarinos-Ascone et al., 2000)

and Rodriguez-Oroz et al. (Rodriguez-Oroz et al., 2001), both of which reported

that a large proportion of tremor-related STN cells were simultaneously related to

voluntary movements either through motor or sensory loops. We speculate that the

suppression of tremor cell activity using therapeutic DBS may have a side effect of

disrupting voluntary motor commands. This result also has an implication for BMI

technology, indicating that tremor tuned neurons should not be omitted from the

ensemble during decoding.
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2.5.2 Elusive relationship between oscillatory activity and tremor

Spike train spectra from VIM and STN neurons tended to possess large amounts of

energy at low frequencies, as in 1/f (pink) noise. This power-law distribution has

been described for cortical neurons and has been explored as a stochastic process

(Davidsen and Schuster, 2002), but alternatively may have been related to slow

modulations of patient attention and motivation. This distribution is likely sufficient

to explain the 2.5 Hz trough (Fig. 2.6) which separates neurons dominated by 1/f

noise from those exhibiting strong oscillations in a tremor-relevant frequency range

(2.5-7.5 Hz). Within this range, we observed a substantial population of VIM and

STN cells exhibiting strong (SNR ą 2) oscillations (Table 2.4). Furthermore, we

found that the mean autopower spectra for recorded VIM cells had a higher peak

frequency than that of recorded STN cells (Fig. 2.8b). This finding is consistent with

a higher mean tremor frequency in ET patients; Deuschl et al. (Deuschl et al., 1998)

reported 4-12 Hz as the typical range for ET patients and 3-6 Hz as the typical range

for PD patients.

Whereas Rodriguez-Oroz et al. (2001) reported that oscillatory cells in STN

did not represent movements, we found moderate overlap (Table 2.1) between VIM

and STN neurons exhibiting oscillations and those tuned to voluntary behavioral

parameters (target, movement, direction). Similarly, we found overlap but no sig-

nificant correlation between the presence of oscillatory patterns and tremor tuning

in both subcortical areas. This finding corroborates the claims of Magnin et al.

(Magnin et al., 2000) and Rodriguez-Oroz et al. that in ventral thalamus and STN,

respectively, the sets of tremor-related neurons and oscillatory neurons show modest

intersection. In other words, not all tremor-related neurons exhibited oscillations,

and some oscillatory neurons exhibited no clear association with tremor.

Furthermore, linear methods revealed no relationship between peak spike train
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frequency and peak hand acceleration frequency (Fig. 2.9). The prospect still re-

mains for an elusive nonlinear relationship between neuronal oscillations and hand

tremor. We hypothesized that for some cells, spike train and tremor co-modulated

via different carrier frequencies. Our heterodyne decoding results suggest that a

substantial number of cells in both subcortical areas may be tremor tuned in this

manner (Table 2.5). Overall, no consensus in the field has been reached regarding

the definitive relationship between oscillatory behavior and tremor tuning.

2.5.3 Network synchrony: genesis or indicator of tremor?

A very high percentage of neuronal pairs recorded in both subcortical areas exhibited

synchronous behavior, both over long and short timescales (Table 2.6). This is

generally consistent with reports of pairwise synchrony in the majority of analyzed

STN pairs (Levy et al., 2002, 2000). It should be noted that we observed high

levels of functional synchrony in neuronal pairs that were much further apart than

the sub-mm separation in the Levy studies. Patients implanted in VIM exhibited

significantly higher synchrony over a short timescale (tight temporal locking of spike

times), whereas patients implanted in STN exhibited significantly higher synchrony

over a long timescale (slow co-modulations in firing rate).

Only cells exhibiting short timescale synchrony with another cell in the ensemble

were found to be tremor tuned; no unsynchronized cells were tremor tuned (Table

2.7). This finding corroborates reports that the prevalence of STN pairs synchronized

at high frequencies is correlated to the degree of parkinsonian tremor (Levy et al.,

2000) and that patients without observable tremor do not exhibit high frequency

STN synchrony (Levy et al., 2002). As in the case of individual tremor tuned cells,

it remains unclear to what degree network synchrony is tremorgenic or passively

indicative of tremor pathology. The efficacy of DBS as a medical intervention suggests

the former, in which case applied stimulation would disrupt the activity of unstable
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networks.

2.5.4 Subcortical recordings in BMI applications

Our reported offline prediction results from our best VIM and STN sessions are

comparable to those reported from selected rhesus macaque cortical regions with the

same number of neurons (Carmena et al., 2003; Wessberg et al., 2000). However,

hyperbolic extrapolation suggests that we would need to increase our ensemble size

by more than an order of magnitude to achieve R2=0.9. Furthermore, there are

several reasons to expect that subcortical BMI may require larger ensembles than

cortical BMI to achieve the same level of performance: broader/weaker somatotopic

and parametric tuning, lower demonstrable levels of volitional control over neuronal

activity, and a high level of local synchrony which would degrade expected BMI

performance via mutual information (particularly in patients exhibiting pathology).

Future developments in subcortical BMI will require chronic recordings of much

larger neuronal ensembles. This will necessitate the design of denser microelec-

trode arrays for cannula-based implantation with demonstrable long-term safety and

recording efficacy. As with cortical implantation in rhesus macaques, chronic record-

ings of subcortical areas will allow time for stabilization of the electrode-tissue inter-

face and recovery of the implanted tissue from local network disruption.

We have demonstrated that microelectrode recordings in the VIM and STN pro-

vide useful information about the properties of single neurons and their relationship

to behavior and pathology. In addition to motor control, subcortical BMI offers

promise for long-term monitoring of potentially pathological activity such as oscilla-

tory firing and elevated levels of local network synchrony. Furthermore, in parkinso-

nian patients we propose that a hierarchical combination of cortical and subcortical

BMI could be used to decode motor intention and/or motor error (due to tremor,

bradykinesia, dyskinesia, etc.). These signals would be used to modulate stimulation
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parameters of the implanted DBS or other targets such as the spinal cord (Fuentes

et al., 2009). Given the extensive number of DBS patients implanted worldwide,

such a closed loop neuroprosthetic would advance neuroscience and neurorehabilita-

tion alike.
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3

Microstimulator

3.1 Abstract

Electrical stimulation of nervous tissue has been extensively used as both a tool in

experimental neuroscience research and as a method for restoring of neural functions

in patients suffering from sensory and motor disabilities. In the central nervous

system, intracortical microstimulation (ICMS) has been shown to be an effective

method for inducing or biasing perception, including visual and tactile sensation.

ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by

directly writing information into the brain. Here we detail the design of a high-

side, digitally current-controlled biphasic, bipolar microstimulator, and describe the

validation of the device in vivo. As many applications of this technique, including

BMBIs, require recording as well as stimulation, we pay careful attention to isolation

of the stimulus channels and parasitic current injection. With the realized device

and standard recording hardware - without active artifact rejection - we are able to

observe stimulus artifacts of less than 2 ms in duration.

120



3.2 Introduction

Numerous studies have shown that electrical microstimulation of neural circuits by

injecting small currents from an electrode tip into the nervous tissue may evoke a va-

riety of effects that are often similar to the functional contribution of the stimulated

area (Tehovnik et al., 2006). In particular, microstimulation can produce or bias sen-

sations (Bartlett et al., 2005); (Salzman et al., 1990); (Britten and van Wezel, 1998);

(Romo et al., 2000, 1998); (Fitzsimmons et al., 2007) (O’Doherty et al., 2011a). This

property of bioelectrical stimulation has attracted the attention of neural engineers

as the key component of sensory neural prosthetics for the restoration of sensation

in patients suffering from sensory disabilities.

Microstimulation has been introduced as a sensory loop in brain-machine-brain

interfaces (BMBIs), systems that both translate brain activity into commands to

artificial actuators and deliver information to the brain in the form of microstim-

ulation of sensory areas. In experiments conducted in our laboratory, we utilized

temporal patterns of cortical microstimulation to create an artificial somatosensory

input for the BMI that enacted arm reaching movements(O’Doherty et al., 2009).

More recently, our laboratory has demonstrated closed-loop BMBI control for de-

livering artificial texture feedback through ICMS(O’Doherty et al., 2011a), where

precise, rapid, and low-artifact ICMS control was essential to give feedback to the

monkey without interfering with recording periods. Here we describe our custom

multichannel microstimulator that enabled these BMBIs.

Intracortical microstimulation (ICMS) poses a number of exacting requirements

on the experimental system. ICMS requires relatively high voltages (50-100 V) when

high impedance (0.5-2 MΩ) electrodes are used (Afraz et al., 2006; Hanson et al.,

2008; Nicolelis et al., 2003). Furthermore, the useful stimulation waveform durations

are usually very short (10µs to 100µs) (Afraz et al., 2006; Bartlett et al., 2005;
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Brindley and Lewin, 1968); (Fitzsimmons et al., 2007; Hanson et al., 2008). The

waveform most frequently used is a charge balanced, symmetric, biphasic stimulation

pulse, where a square cathodic pulse is followed by an anodic pulse of equal amplitude

(Grill and Mortimer, 1995). Although the second pulse can reduce the excitation of

the tissue, damage to the electrode and tissue is prevented by this charge balancing

pulse. The impairing effect of the second pulse can be partially counteracted by a

short (100 µs) delay between the two pulses (McIntyre and Grill, 2000)). Due to the

variable electrode to tissue impedance, and response of the tissue to charge, cortical

stimulation is usually performed with constant current sources (Merrill et al., 2005).

In terms of safety, the range of figures quoted here – 100µs pulses of 100µA/phase –

equates to 10nC/phase, well within the regions described by (McCreery et al., 1988).

Charge density using our 65µm electrodes is 300µC/cm2/phase, which is also within

the safety limits proposed by (Shannon, 1992).

The current, voltage and timing requirements are not difficult to achieve with

modern electronic systems, and many commercial products are available that sat-

isfy the conditions. However, for advanced ICMS studies, the complexity of the

stimulus train and number of electrodes enforce more rigorous requirements on stim-

ulation technology. There is immediate need for advanced microstimulation systems

capable of operating as ICMS feedback systems in BMBIs (Lebedev and Nicolelis,

2006); (Fitzsimmons et al., 2007); (O’Doherty et al., 2009);(Marzullo et al., 2010).

These systems require microstimulation in multiple sites in the brain, using multi-

ple electrodes and complex spatiotemporal stimulation patterns (Fitzsimmons et al.,

2007; London et al., 2008; O’Doherty et al., 2009), delivered at low latency to enable

closed-loop control (O’Doherty et al., 2011a). It is critical for these systems to in-

duce artifacts of minimal duration to adjacent recording sites to maximize recording

quality in BMBIs.

Our stimulator is high-side current controlled, which nearly eliminates the charge
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Table 3.1: Microstimulator Specifications

Parameter Value
Compliance 50V(160V max)

Current 800µA
Current resolution 0.2µA
Output impedance ą10MΩ

Leakage current 300pA
Parasitic current injection 30pC/pulse

Charge imbalance -0.094˘0.56 nC
Channel isolation 15pF
Timing resolution 10µs

Timing latency 5.4 ms˘180µs
Power 300mW/channel
Size 13 cm x 2.5 cm/channel

Channel count 15 (bipolar/monopolar)

and discharge current of stray capacitance between each isolated channel and animal

ground. High-side means that the compliant current source is tied to the voltage rails,

not ground; with a low-side current source, the current regulator develops voltage

across it depending on electrode impedance, voltage that is presented to the stray ca-

pacitance of the microstimulator and experimental wiring. Since currents associated

with charging and discharging voltage offsets from stray capacitance must necessar-

ily go through the stimulation electrodes, and ultimately through the ground that

connects the animal to wired recording systems, voltage offsets should be minimized

for both accuracy and artifact avoidance. High-side current control is, to the best of

our knowledge, unique to this design. Further artifact suppression can be achieved

through close-proximity bipolar biphasic stimulation, which restricts the spread of

electric field within the tissue while remaining efficacious (Fitzsimmons et al., 2007).

Finally, the described stimulator is highly flexible: both the current and duration of

both phases of the biphasic stimulus waveform can be controlled continuously from

a computer with tight synchrony. This computer control permits stimulus trains of

arbitrary complexity to be enacted in real-time as needed for a BMBI.
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It should be emphasized that the construction and testing of this device was done

explicitly for a tethered research environment – that is, where the microstimulator

is not mounted on or in the experimental animal – as no commercially available mi-

crostimulators were available to permit high temporal fidelity, high flexibility (any

pattern can be commanded), high compliance, good current resolution, good chan-

nel isolation, minimum parasitic current injection, and a flexible number of channels.

Full specifications of the described device are listed in Table 3.1. Given these design

criteria the size of the device is large and consumes 300 mW per channel. In compar-

ison, other research into microstimulators such as the clinically-targeted Bion (Kane

et al., 2011) are much smaller and lower power, but correspondingly much more ex-

pensive, less flexible due to their high level of integration, and not matched for the

high compliance voltage required by our electrodes. Integrated ASIC microstimu-

lators such as (Hassell et al., 2007) and (Ghovanloo and Najafi, 2007) offer compli-

ance of 11V or less, which is insufficient to drive current through high-impedance

(more than 100kΩ) electrodes; full systems described in (Myers et al., 2006) offer

insufficient latency and bandwidth for our experimental requirements. Finally, the

current-mirror topology of integrated microstimulators does not guarantee low leak-

age current, which is critical as DC current will gradually erode the tips of electrodes

and damage neural tissue.

3.3 Methods

3.3.1 Microstimulation system

The full microstimulation system is comprised of four principal elements: high-level

control programs (web interface, UDP sever), a low-level driver/DMA control pro-

gram, stimulus isolation channels, and the stimulation electrode array (including lead

system). Software control of the microstimulation system is depicted in Figure 3.1.
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Figure 3.1: Schematic overview of software control of the microstimulator.

3.3.2 Software control

Interactive control of the microstimulator is through a custom driver program. This

program, which runs on a dedicated computer Linux running a low-latency kernel,

services a free running National Instruments PCI-6533 card, which continually out-

puts 16 or 32 bits of digital data at a clock rate of 100 kHz. These digital data consist

of multiplexed control pulses and serial peripheral interface (SPI) commands to set

the channel current. Data to be output are read by the PCI-6533 from a circular

DMA buffer, the address of which is acquired through a custom Linux kernel module.

The driver maintains the DMA buffer via a set of watermarks, placement of which

depends on the speed of the computer and its peripheral subsystem. To prevent

underflow, typically this is less than 200 samples, which translates to a delay of 2

ms at the 100 kHz clock rate. Between DMA servicing cycles – when the watermark

criteria are satisfied – the driver program interprets control commands written to a

common memory-mapped file.

Microstimulation commands can either be issued through a python-based web

interface, or from a UDP server. The latter allows the stimulator to be controlled

through Matlab or from other experimental software, such as the BMI software de-

veloped in our lab. The web interface allows easy user control of all parameters

125



isolated
power supply

magnetic 
digital 
isolation

DAC

Bipolar 
current supply

iso

iso

iso

External
voltage
monitor

Outputs

4

iso

iso

5V

5V

40-160V

5V

Input from computer
NI PCI-6533

Current
commands

A B

Isolated 
monitoring 
circuit

Figure 3.2: Schematic overview of one stimulator channel.

of stimulation, e.g. current amplitude, pulse width, frequency, and secondary fre-

quency from any networked computer. The present software implementation allows

the stimulation pattern to be a single pulse, a continuous train of pulses, a pulsed

stimulation train, a doubly-pulsed stimulation train corresponding to three periods

and duty cycles (Hanson et al., 2008), or a stochastic stimulus train derived from a

gamma distribution. More complicated stimulus programs can easily be added to the

driver program to provide more sophisticated feedback. In the experiments described

in (O’Doherty et al., 2011a), where 50ms of BMI decoding alternated with 50ms of

microstimulation, we minimized kernel overhead and tightened DMA watermarks so

that the latency from BMI command to stimulation, including UDP transmission

over ethernet, was 5.4 ms˘180µs (mean˘standard deviation). This low-variance

latency permitted precisely timed ICMS feedback.

3.3.3 Stimulus isolation units

Four stimulator channels are assembled on a circuit board, providing independent

and isolated monopolar or bipolar stimulation per electrode. Four of these boards

can be stacked and serviced by one PCI-6533, for a total of 15 stimulation channels1.

An overview of a single channel is shown in Figure 3.2.

There are four primary elements to each channel: the power supply, digital-

1 The PCI-6533 has 32 digital input/output channels, and each channel requires two lines plus
two common signals for all channels, hence only 15 channels can be controlled from one PCI-6533
card.
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Figure 3.3: Detailed schematic of one-half of the voltage-controlled high-side cur-
rent source. This topology is mirrored to provide a bipolar current source from one
voltage supply. The mirror axis is shown by the dotted line.

to-analog converter (DAC), bipolar current regulator, and an isolated monitoring

circuit. The isolated power supply uses two series 1 W miniature DC-DC converters

to provide 40-160 V for high compliance / high impedance electrodes. An additional

1 W DC-DC converter is used to supply 5 V for the DAC and other circuitry. Current

is commanded via the SPI DAC, with separate commands for the anodic and cathodic

phases; the command signals for each DAC (clock, data, chip select, load output) are

multiplexed with the anodic and cathodic pulse commands so only four signals need

pass through the magnetic isolator. Stimulation is enabled with the inverted DAC

chip select signal; current amplitude can hence be changed whenever stimulation

pluses are absent. Chip select and DAC load output signals are common among all

channels, thereby requiring the total number of digital control signals to be two plus

twice the number of channels; in turn this means currents on all channels must be

set (but not necessarily changed) at the same time.

The core of the stimulation unit is a voltage-feedback high-side current source,
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shown in Figure 3.3. It is vital that the current source is high-side, as the topo-

logically simpler low-side control alternative necessitates that during the anodic and

cathodic phases the current needed to charge the stray capacitance from one channel

to ground must pass through the output electrodes. Note the current source is a

symmetric H-bridge, so for clarity only half is fully shown in the figure. Briefly, each

half receives two inputs: a voltage command from the DAC into Vdac A, and an

inverted pulse command on Ain. Transistors Q2 and Q9 act as common-collector

amplifiers to detect differences between voltage across the sense resistor, R1, and

Vdac. Transistors Q4-Q7 act as a differential amplifier to set the current through

Q11 and Q15. The latter directly controls the current into the opposite electrode in

the pair, while the former supplies current to turn on the lower leg of the H-bridge,

Q12. Note that base current into Q12 also goes through the sense resistor R1, so the

current command is off by a fraction set by the ratio of resistors R2 and R3 * βQ15.

This offset is measured below and corrected in software. Capacitor C1 controls the

slew rate of the Q4-Q7 pair, and prevents feedback oscillations. Finally, Q3 and Q10

serve to turn off the output stage when the control signal goes high; Q10 is essential

for draining base charge on Q12 and returning the output to a high impedance con-

dition. Buffer U1 serves to delay this command to Q10, allowing Q12 to remain on

for about 4µs longer so as to discharge any residual charge on the electrodes, and

hence between the animal ground and isolated ground. As mentioned before, this is

to minimize artifact on neighboring recording electrodes. Transistor Q3 is saturated

on when output is disabled, which turns Q5 on through the current mirror, hence

setting the base current of Q15 to zero; this means that stimulator leakage current is

dominated by the off-state current mismatch through Q15 and Q12, which is mea-

sured to be less than 300 pA. It was chosen to make the output high-impedance when

off rather than short-to-ground to further minimize noise injection.

For safety, diodes D4, D5 and their mirrors serve to protect the output stage from
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ESD damage along with resistors R1 and R2. If this topology is used in a clinical

setting, further protection will need to be added, as failure-to-short of any transistor

can tie one half of the H-bridge to a supply rail, and failure of two transistors can

permit unregulated DC current through the electrodes. In the implemented boards,

all transistors are rated at 185 V or higher, while the supply voltage is typically 50 V;

no semiconductor failures have observed in several years of operation, though one

channel in one stimulator was disabled prior testing due to internal PCB delamina-

tion. This is best fixed by simply using a thicker medical-grade PCB. Finally, While

there are no hardware limits on the duration of delivered current, we have observed

no software failures leading to DC current applied to the animals. Transistor bias

currents limit total current delivered per channel to 800µA.

The isolated monitoring circuit stage is shown in Figure 3.4. Blocks U1 and

U2 contain one infrared LED and two matched photodiodes. Opamps O1 and O2

regulate the LED current to match the photodiode current to that from inputs Aout’

and Bout’ (see Figure 3.3); this mirrors the current onto the non-isolated photodiode

pairs. Opamp O3 converts the resulting non-isolated bipolar photodiode current to a

voltage, and opamp O4 works to null DC differences due to photodiode imperfections.

In turn, O6 drives indicator LEDs, and O5 the final output, which can be viewed on
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an oscilloscope or digitized. Because the current command and resultant voltage are

known, this circuit allows electrode resistance to be easily calculated.

3.3.4 Electrodes

The electrodes used in testing this system were fabricated in-house at the Duke

University Center for Neuroengineering (DUCN). The electrodes work well for both

chronic multisite neural ensemble recordings and for stimulation. The DUCN micro-

electrode arrays consist of tungsten or stainless steel microwires with teflon, SML,

or HML insulation. The overall diameter of the microwires is in the range of 25-

65 µm, and the separation of electrodes in the array is the range of 200-1000µm,

center to center, depending on the brain area targeted, the animal species, and the

experimental protocol (Lehew G, 2008). For all testing and validation use of the sys-

tem reported here, we stimulated between two of electrodes chosen from an arrays

constructed with stainless steel microwires and HML insulation.

3.3.5 Assembly and Testing

Electrical schematics were designed in the open-source Kicad software suite; the PCB

was designed in Kicadocaml then manufactured by Imagineering Inc. (Elk Grove,

Illinois). We elected to use entirely discrete components in this device for manufac-

turing ease and cost; the current regulator and other parts could be integrated in a

high-voltage bipolar process. The smallest components placed were 0402 chip resis-

tors and capacitors, though the majority of the PCB is populated with 0603 scale

resistors and transistors, only on the top of the board; this leads to a total PCB area

for 4 channels of 187 cm2 with a mass of 120 g. As mentioned in the introduction,

this is much larger than comparable microstimulator ASICs designed for implanta-

tion, which are less than 1 cm2, but the device meets its intended research purposes.

Four PCBs can be stacked to obtain 15 stimulation channels. A photograph of the
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Figure 3.5: Photograph of a populated PCB featuring four bipolar channels; input
is on the lower left, output on the right.

assembled PCB is shown in Figure 3.5.

3.4 Results

3.4.1 Bench-top testing

The system was first tested using resistive loads to verify proper circuit perfor-

mance and timing. Figure 3.6 shows the output of the simulator through a 100

kΩ resistor and the resultant isolated monitoring output. The latter has a voltage

attenuation of 25 to allow headroom for measuring large-amplitude signals or high-

impedance electrodes. In practice, the waveforms have much lower slew rate due to

the capacitance of the wire between electrode and microstimulator and the nonlinear

charge/discharge profile of the electrode-tissue interface.

The implemented system is capable of a current range of 0-400 µA or 0-800 µA,

depending on the DAC output scaling. Output currents larger than this will require

different bias currents in the bipolar current regulator, hence a few component values

would need to be changed. The stimulator features a measured maximum voltage

compliance of 160V, and an output parallel resistance of greater than 10 MΩ. To

characterize the slew rate of the current source, rise and fall times of the pulse output

were measured across a 118 KΩ resistor for varying currents. Rise and fall times are
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Figure 3.6: Top, output of microstimulator through a 100 kΩ resistor, current set
at 200µA, anodic and cathodic phases set to 100µs, delay between pulses 50µs.
Bottom, simultaneous output of isolated monitoring circuit.
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the anodic pulse had to charge stray capacitance whereas the cathodic did not.

defined as the time for the voltage to increase from 10% to 80%, and to fall from 80%

to 10% of the output amplitude, respectively. As can be seen in Figure 3.7, the rise

and fall times ranged from 6-20 µs for output voltages of 5-38 V, with longer rise and

fall times at higher output amplitudes. This corresponds to a slew rate of 5 V/µs at

larger amplitudes; this may be decreased by increasing the value of capacitor C1 in

Figure 3.3.

As mentioned above, the current output is less than the commanded output

current by the base current of transistor Q12 in Figure 3.3. This current was set
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conservatively in the present implementation to allow higher output currents, hence

must be corrected in software. To calibrate the device, we tested the output across

97, 120, 180, 240, 270, 330, and 470 kΩ resistors, with current amplitudes of 50, 75

and 100 µA. Figure 3.8 shows the result of this calibration, in which the trend line,

found using linear regression, has slope of 0.745. The pulses measured in this test

were deemed to have started when the voltage reached 50% of peak amplitude, and

to have ended when the voltage dropped to 50% of peak amplitude. The output

voltage amplitude is defined as the mean voltage during that interval.

Using these criteria, we also measured the distribution of pulse widths, shown in

Figure 3.9. For a 100 µs command pulse, the distribution of measured pulse widths

was found to have a mean of 92˘1.3 µs. The charge balance of each stimulation

pulse was calculated, and the distribution is shown to the right. The mean charge

imbalance for commanded pulses was -0.094˘0.56 nC. For comparison, the charge

delivered in each phase is 5-10 nC, so this imbalance is only on the order of 1-2%.
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Figure 3.9: Left, distribution of measured pulse widths for a 100µs command pulse.
Right, distribution of charge imbalance for pairs of anodic-cathodic pulses.

3.4.2 In Vivo testing

To characterize the stimulator in intended application, we examined the effects of

ICMS in a rhesus monkey chronically implanted with multielectrode arrays bilaterally

in motor and sensory cortices. In the first of these tests, we applied stimulus trains

consisting of 150 µs long, 100 µA anodic and cathodic pulse pairs separated by a

delay of 25 µs. Fifty of these pulse pairs were applied with an inter-pulse interval of 10

ms to electrodes spaced at 1 mm in the arm representation of the left primary motor

cortex (M1). Simultaneously we recorded using a Plexon Inc. (Dallas, TX) Multi-

acquisition processor (MAP) from electrodes implanted in the arm region of M1 of

the opposite hemisphere, using standard spike (passband: 170 Hz-8 kHz, gain:1000)

preamplifier boxes and custom headstages with a gain of 8 and one high-pass pole

at 560 Hz.

In Figure 3.10, trace A was recorded from a blunt-cut 50 µm Teflon-insulated

stainless electrode at +15.5 mm lateral the mid-line, +4.5 mm rostral the intra-aural

line, or 32 mm from the center of the dipole created by the stimulating electrode.

Trace B is from the same type of electrode, at +12 lateral, +10 rostral, making it 29.2

mm from the stimulating dipole; trace C is from a sharpened HML-insulated 65 µm

stainless electrode +15 lateral, +6 rostral, hence 31.5 mm from stimulating dipole.

Despite the fact that all three recordings were from about the same distance from
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Figure 3.10: Three example voltage traces recorded from different electrodes in
right M1 arm region of a rhesus macaque. Traces show varying amounts of stimulus
artifact and simultaneous extracellular action potentials, as sorted in the Plexon
software, indicated with red asterisks. Channels A and B were referenced to a
reference electrode, hence have a smaller artifact. Channel C was referenced to
animal ground.

the stimulating dipole, the top trace shows no stimulation artifact, the middle shows

a small stimulation artifact, and the bottom shows a large stimulation artifact. The

differences are likely due to different referencing for the three channels – channels A

and B were referenced to electrodes in the microelectrode array functionally identical

to the recorded electrode, while channel C was referenced to animal ground, which

is connected to T-bolts implanted through the scull. In the Plexon preamplifier,

reference channels are subtracted from individual electrode channels to cancel out

common-mode noise; it can work well though better methods exist (Rolston et al.,

2009b).

To further test the degree to which microstimulation interferes with neural record-

ing, we needed to increase the artifact on channels A and B shown in Figure 3.10. As

increasing the spacing between electrodes increases the size of the associated electric

field, we made the distance between the stimulating electrodes as 5.6mm, as large

as possible within one microelectrode array in the chronically implanted monkeys.

Figure 3.11 shows the resulting traces, which indicate accordingly that the artifact
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Figure 3.11: Three electrode traces recorded from right M1 arm region of a rhesus
macaque. Stimulus artifact resultant 100 µs, 100 µA anodic and cathodic pulses
separated by a delay of 100 µs. A,B,C as 3.10, only distance between stimulating
pair was increased.

has increased as compared to figure 3.10.

Importantly, neuronal spikes are clearly still visible in between stimulus artifacts

on Figure 3.11 traces A and B. Trace C shows a broader artifact that may oc-

clude spikes. To accurately determine the width of these artifacts, we next recorded

continuously for one hour, again from several microelectrodes located in the arm rep-

resentation of M1 while stimulating the contralateral hemisphere with 100 µs, 100

µA anodic and cathodic pulses separated by a delay of 100 µs. These pulses were

applied once a second (1Hz) to two electrodes spaced at 1 mm, the same electrodes

as in Figure 3.10.

Figures 3.12 and 3.13 show the two extremes of the result of this test: Figure 3.12

shows a channel that was very minimally effected by the stimulus artifact, while

Figure 3.13 shows the channel that was broadly affected. Figure 3.12 is consistent

with only minor interference with spike detection and sorting, and only for those

spikes whose duration spans the stimulus pulse. Figure 3.13, however, suggests that

at least one part of the amplifier chain, most likely the high-gain preamplifier, is

driven to saturation for the duration of the artifact; it is unlikely that the headstage
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Figure 3.12: A, Rasterplot of spike times relative to the 1 Hz stimulation pulses;
electrode and neuron were the same as shown in A of Figures 3.10 and 3.11. B,
Peri-event time histogram (PETH) of the corresponding spike rate, binned at 1 ms.
Artifact, while not visible in Figure 3.10, is visible here, and is «1 ms.

Figure 3.13: A, Rasterplot of spike times relative to the 1 Hz stimulation pulses;
neuron was recorded from leg representation of right M1 @ +4.5 lateral, +2 rostral
from 65 µm HML insulated stainless electrode, or 21 mm from the stimulating pair.
B, Peri-event time histogram (PETH) of the corresponding spike rate, binned at 1
ms. Artifact was 6.5 ms and was the longest of those recorded in this session.

is driven to saturation, as then the result in Figure 3.12 would not be possible. These

two channels, other than slight differences in distance from the stimulating pair, are

only different in their referencing - the channel in Figure 3.13 was referenced to

ground. These results show that it is possible to record with very minimal stimulus

artifact with the described stimulation system, proper referencing, and centimeter
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Figure 3.14: A, Mean aggregate firing rate of 190 neurons recorded from 112
electrodes in left and right motor cortex from a rhesus macaque. Stimulus was
groups of 8 150 µa pulses separated by 5 ms. Note blanking due to stimulus artifact
and rebound excitation after stimulus group. B, Boxplots of the stimulus artifact
duration grouped by recording side. Box indicates 25% and 75% intervals, with the
center line indicating mean duration, whiskers the distribution of all data, and ’+’
the duration of two outliers.

spacing between stimulating and recording electrodes. Note that no stimulation

artifact suppression system was used.

To further characterize the duration of the artifact for much closer stimulation-

recording distances, we examined the stimulus artifact on 112 channels during a

closed-loop stimulation task with a rhesus macaque. Of the 112 recording elec-

trodes, 32 were in motor cortex contralateral to stimulation, mean distance 36˘1.7

mm from stimulating pair; the other 80 were ipsilateral, in the same array as the

stimulating electrodes, mean distance 2.7˘1.2 mm. Plotting stimulus artifact dura-

tion by absolute distance from stimulating pair did not yield any observable trends

due to varying referencing and per channel gain, so the aggregate data is presented

in Figure 3.14. Stimulus artifact in contralateral recording electrodes was 2.1˘0.8

ms, and 5.8˘2.3 ms for ipsilateral. Though the electrodes here are much closer to

the stimulating pair than Figures 3.12 and 3.13, this is short enough that spikes

can be recorded between stimulus pulses on many channels, as can be observed from
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Figure 3.15: EMG responses to stimulation of right M1 cortex. Top trace shows
the timing envelope of the stimulus; below that: LWE = left wrist extensor; LWF
= left wrist flexor; LB = left biceps brachii; LT = left triceps brachii; RWE = right
wrist extensor; RWF = right wrist flexor; RB = right biceps brachii; RT = right
triceps brachii.

the aggregate firing rate in Figure 3.14 A.

3.4.3 Efficacy in Nervous Tissue

To demonstrate the efficacy of the stimulator in activating nervous tissue, we per-

formed stimulation of the right arm representation of M1, with two stimulating

electrodes consisting of HML insulated sharpened 65 µm stainless steel, centered

+15mm lateral, +10mm rostral. These electrodes were the deepest of the array and

penetrated the cortex by «3.4 mm. Stimulation pulses were 100 µs pulses of 75 µA,

separated by 50 µs; fifty of such pluses were applied for each trial at 100 Hz. The

results of this protocol are depicted in Figure 3.15.

The microstimulation had a gradually increasing effect on EMG during the half-

second of duration of pulses, as is evident in the Figure. More immediate responses
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and broader activations (including muscles of the torso) were obtained with higher

currents - up to 175 µA. No other effects, harmful or otherwise, were observed in the

monkey.

3.5 Conclusion

We have demonstrated the design of a multi-channel high-side digitally current reg-

ulated microstimulator, and verified its function on the bench as well as in an exper-

imental animal. The design tries to minimize current injected as a result of parasitic

capacitance between the microstimulator and animal ground, and as a result is capa-

ble of introducing only very short artifacts into simultaneous neuronal recordings –

less than 1ms in some configurations – which, when combined in low-latency control,

is suitable for experiments where neural recording and microstimulation are tightly

interleaved. Our microstimulator offers a compliance of 50V or greater for stimulat-

ing high-impedance electrodes with a very small leakage current of 300pA or less. As

such, the design is immediately applicable to experiential neurophysiology; indeed,

in our lab we have been using three instances of the stimulator.

Several improvements are suggested by the results. Other than further reducing

parasitic capacitance, it would be useful to provide a greater range to the output

current. For example, if the feedback resistor (R1 in Figure 3.3) and bias currents

are adjusted, the same stimulator topology can easily be used on muscles for func-

tional electrical stimulation (FES). An alternative to the present H-bridge design is

a bipolar supply totem-pole configuration with current mirroring rather than feed-

back stabilization, so there is no need for a feedback resistor an its attendant voltage

offsets; however, this design can be susceptible to leakage current and charge imbal-

ance, both which can damage electrodes. Even though the microstimulation artifact

is short, active or forward cancellation schemes may be desired to reduce the artifact

to below the noise level. Perhaps the most pressing concern, however, is size - if
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microstimulation with simultaneous recording is to be clinically applied, stimulation

channels and controller will need to be integrated onto one chip, consume less than

1mW, and likely share a common power supply rail with recording apparatus. We

believe that the topology described herein represents a step forward in microstimula-

tor design for experimental use, that the lessons in minimizing artifact are instructive

to other practitioners, and that the same compact topology may be integrated and

miniaturized into a ASIC for future clinical use.
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4

Wireless recording system

4.1 Abstract

As a step towards fully implantable neuroprosthetic device for clinical applications,

we have designed a wireless recording system for untethered large-scale recordings

from primate brain. The system consists of digitizing headstages, transceiver, di-

versity receiver / ethernet bridge, and client software. Each headstage amplifies,

multiplexes, and digitizes signals from 32 electrodes. The transceiver is connected

to four headstages for a total of 128 channels per radio. The transceiver features a

blackfin DSP which performs automatic gain control, LMS adaptive noise cancella-

tion, 8 poles of high and lowpass filtering, two template comparisons per channel,

data compression, and pipelined radio control, all in less than 80 instructions per

sample. The transceiver transmits 1.3 Mbps full filtered analog trace of four chan-

nels and threshold match for both units on 128 channels; this is interleaved with

83 kbps reception, which allows the client to edit parameters on the transceiver.

The radio protocol allows any memory location to be changed on the transceiver,

and the transceiver streams from any location in memory, which is dangerous but
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exceedingly powerful: any part of the signal chain may be edited and transmitted.

The transceiver and wireless headstages consume approximately 264mw from a 3.7

V lithium battery, or 2 mW/channel, which allows to run for over 30 hours on a

rechargeable cell. All parts for this system are commercially available (COTS) and

up to 20 transmitters, or 2560 channels, may run at the same time. We have verified

the operation of the system in a rhesus macaque implanted with multielectrode arrays

in the areas of sensorimotor cortex representing both upper and lower extremities

in both hemispheres. This monkey was trained to do one and two dimensional BMI

tasks through the wireless system while he was in his home cage. Thus, our wire-

less system allows us to continuously record from unrestrained primates and allows

unfettered access to the BMI or other research tasks.

4.2 Introduction

The most promising source of control signals for a neuroprosthetic device is popula-

tions of single units in the precentral or motor cortex. One limiting step in reliably

obtaining these signals is the tissue-electrode interface; the other is the recording

system. The latter ultimately will need to be high channel count for sufficiently

precise volitional control and fully wireless to minimize the possibility of infection.

Furthermore, there exists a need in neuroprosthetic and neuroscience research for a

tool which allows unfettered, continuous real-time recording from primates. Wireless

recording is essential for e.g. investigating social interactions, realistic motor con-

trol, or neural activity during sleep. The system described here solves these issues

using relatively inexpensive COTS components and is a step toward an implantable

neuroprosthetic.

4.3 Methods

The development of this device went through a number of cycles.

143



4.3.1 Revision 1

The first aim was to make a wireless recording system which digitized and transmitted

signals from 32 electrodes. As this was conceived as a time and cost-sensitive project1,

it was decided that all components would be COTS. The critical factor here was,

of course, the neural amplifiers, which need low input-referred noise, high gain, and

a bandpass filter (highpass to remove low-frequency noise and electrode offset, and

lowpass to remove high frequency noise). The best option at the time was Texas

Instruments LMV1032 series of electret microphone preamplifiers, which are designed

for microphones in commodity items like cell phones and Bluetooth headsets. They

are tiny bumped bare silicon devices with a gain of 6, 15, or 25 dB, and a bandpass

filter for the audio range 100 Hz - 20 kHz, and 100 µW power consumption from a

unipolar 1.8 V supply. The SNR of the LMV1032-25 @ 1.7V is specified at 61 dB

given an input tone of 18mV pk-pk at 1 kHz; this translates to 5.6 µ Vrms input-

referred noise. Actual devices were measured to have 8 µ Vrms input-referred noise

with a shorted input in a unshielded lab environment. Figure 4.1 shows LMV1032-6

amplifier response to a 1 mV test signal; passband is suitable for neural recording,

and at the time the input-referred noise was also determined to be sufficient.

Neural signals range up to 1mV; the electret preamplifiers saturate at 1V pk-pk,

hence a passband gain of 53.9db is desired, which was attained by cascading two of

these 25 dB chipscale amplifiers. These were multiplexed into an Analog Devices

ADG726, followed by a 2x gain through THS4281, then digitized at 12 bits and 1

Msps with an ADCS7476. ADC data was red into a Blackfin ADSP532 DSP, which

simultaneously controlled the multiplexer and radio. At the time2, the Blackfin

offered the lowest power dual multiply-accumulate DSP architecture; on the board

it was clocked at 240Mhz with a core/peripheral voltage of 0.8/2.7 V. The radio was

1 At the outset – we shall see how many revisions were actually required

2 and still!
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Figure 4.1: Frequency response of LMV1032-6. Gain is 2, as expected.

chosen to be an nRF24L01+, a commodity 2.4GHz FSK radio used in data-logging

Nike shoes and similar. Other wireless biopotential systems utilize the same radio

(Darmanjian et al., 2006; Thorbergsson et al., 2008). Though this was easier and

simpler than a custom FSK or OOK radio as in (Miranda et al., 2010) control was

not without difficulty. Bidirectional protocols proved to be tricky with this radio, as

reading the received packet FIFO at an inopportune time or clearing status bits in

the wrong order lead to corrupt data. The final bidirectional protocol is detailed in

figure 4.2. For this revision, full waveform snippets surrounding threshold crossings

were sent, which necessitated a fast clock rate as the Blackfin’s jump and branch

latencies are relatively high (5-9 cycles, depending on branch prediction). It also

lead to a varying outgoing bandwidth and hence the possibility of dropped spikes,

issues that have been carefully investigated in (Bossetti et al., 2004) and were to

inform later designs.

The board was designed in Kicad, an open source EDA software, and hand as-

sembled in my basement (At this time I was taking a leave of absence from the
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Figure 4.2: Flowchart detailing control of Nordic Semiconductor nRF24L01+ chip
radios.

Figure 4.3: Layout of revision 1 of wireless headstage. Board is 4-layer standard-
thickness FR4, 5 mil trace/space.

university). See Figures 4.3 and 4.4.

Testing of revision 1 proved instructive for the task. Four biquads of IIR filters

were designed, but the canonical Direct form type II filter (Figure 4.5 proved not

work with Blackfin’s 1.15 signed fixed-point arithmetic. A biquad implements the

transfer function:
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Figure 4.4: Assembled version 1 headstage. Sparkfun Nordic radio, without an-
tenna, at top; electret amplifiers, the few that I could successfully hand-place, at
bottom right. Resistors are to pull-down SPI lines. Philips chip below radio is a
DAC off a SoundBlaster audio card and was used to verify IIR filtering performance.
Device consumed 114 mW running radio and all filtering.

Hpzq “
b10 ` b

i
1z
´1 ` bi2z

´2

1` ai1z
´1 ` ai2z

´2

When implemented with a minimum-delay Direct Form II 4.5, calculating the

numerator before the denominator will saturate the fixed-point arithmetic (rounding

and saturation occurs at the summation steps). Furthermore, most biquads demand

denominator coefficients ą 1, which cannot be represented in 1.15 fixed-point num-

bers.

The solution, as described by (Drutarovsky, 2005), is to use a Direct form I type

filter with the additional S2RND flag for the MAC instruction. This flag causes

accumulator results to be saturated and shifted left 1 bit (*2) prior moving to a
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Figure 4.5: Direct form II implementation of an IIR biquad. This topology uses
the minimum delays (2), but requires two rounding steps, the first of which usually
saturates.

Figure 4.6: Direct form 1 with post-scaling by 2. Note delays for denominator
(right) are shared with subsequent biquads.

16-bit register, hence all filter coefficients are pre-scaled by 0.5. See 4.6. Final filter

was implemented in assembly and used ping-pong buffering, register preload, and

shared delay taps to achieve near optimal processor utilization.

4.3.2 Revision 2

As this initial prototype proved that the strategy and components could work, the

next revision was designed to be sufficiently small so as to fit on a monkey’s head.

Here three LMV1032 stages were employed (25, 15, and 15 dB), for a total of 55dB

total gain (much closer to the design target of 54 dB) and a max input signal of

1.7 mV pk-pk. The board was designed in Kicad and Kicadocaml3, and fabricated

on 6-layer 63 mil FR4. A USB interface was added so that the same design could

be both a transmitter and receiver, as well as EMG recording circuitry and debug

interfaces (JTAG, RS232). These ancillary interfaces could be removed by simply

3 An open-source PCB layout tool which I wrote.
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Figure 4.7: Design for revision 2 of the headstage. Most parts were placed on
the top side of the PCB, making it much larger (13.46 x 6.35 cm) than successive
designs. A, arrays of electret amplifiers, 96 in all. B, 2x gain and ADC. C, ADG726
multiplexer. D, Nordic nRF24L01+ radio, integrated rather than on an add-on
board. E, Blackfin processor. F, TPS62410 two-channel switch-mode converter;
voltage output 2.85V and 0.8V, the latter which supplied the DSP core. H, Maxim
MAX3421E USB interface chip, controlled through SPI. I, Digital magnetic isolators
to EMG circuitry. J, Four-pole multiple-feedback bandpass filter, highpass at 20
Hz to remove EKG, lowpass at 400 Hz, designed in LTSpice. K, Intersil ISL28470
instrumentation amplifier, gain of 40 dB with one highpass pole at 10 Hz. L, JTAG
and flash programming headers.

cutting the board in two with a Dremel tool. Figure 4.7 shows the design.

While the radio and processor functioned well, the electret amplifiers did not. The

bias voltage output of the first stage (500 mV) either forward biased ESD protection

diodes in the subsequent stage, or pushed the input stage transconductance amplifier

out of normal operating point. This effect was unexpected as the data sheet shows

the input as being capacitively coupled, and led to 113 µ Vrms of input-referred noise,

which rendered the prototype completely unsuitable for neural recording.
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Figure 4.8: Simulated response for EMG filter chain, including front-end gain of
40 dB. Input is -60 dB; passband gain is +54 dB.

4.3.3 Revision 3

The obvious solution to the bias voltage problem was to properly capacitively couple

individual stages of electret amplifiers. This was done using 0.1 µF 0201 package ca-

pacitors between each of the gain stages. To further minimize size, two 74HC4067BQ

16:1 muxes replaced the single ADG726, and components were placed on both the

top and bottom of the board. See Figure 4.9. As before, one board was designed for

multiple uses, including EMG and microstimulation (Fig. 4.10); this makes economic

sense, as the primary cost of board is tooling and other non-recoverable engineer-

ing costs (NRE). One board was again designed to serve both the transmitter and

receiver role via the inclusion of a SPI USB interface.

Power consumption for this device was 137 mW from a 3.7 V lithium ion bat-

tery; of this 96 amplifiers (powered through an LDO) consumed 22 mW, the radio

condumed 37 mW, ADC and opamps 7 mW, 12 mW were lost in the buck converter,

and the remaining 59 mW was consumed by the Blackfin. To test neural recording,
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Figure 4.9: Revision 3 wireless headstage. A, Omnetics 36-pin connector. B, Array
of 96 electret amplifiers coupled through 0201 capacitors. C, 16:1 multiplexer. D,
Gain and ADC, 1 Msps at 12 bits Ñ 31.25 kSPS per channel. E, Blackfin DSP. F,
Nordic radio. H, 4 Mbit SPI boot flash. J, Connection to the rest of board for flash
programming, EMG, and USB. Size of wireless section is 3.8 x 2.4 cm.

100 muV pk-pk 1kHz sine wave was input to the device through a 33k / 27 Ω divider

circuit. Output-referred noise was 36 mVrms (144 mV pk-pk on the scope) while the

signal was 650 mV pk-pk; this equates to an input-referred noise of 6.5 µ Vrms, which

agrees well with the measured values. Notably, this figure was only obtained when

the amplifiers, which are bare silicon, are completely shielded from fluorescent lights

in the lab; any near-infrared light is sufficient to activate or saturate the circuitry.

While the noise and power figures were acceptable for neural recording, none was

ever attempted due to the great difficulty obtaining sufficient yield from this discrete

analog front end. For all the channels to work fully 512 « 10µL solder paste droplets

must be well aligned, each must form a reliable solder joint, and 160 components

must be within ˘0.12 mm of their desired place, something which is impossible for

human hands and difficult for my homegrown pick-and-place robot (the reason why

151



Figure 4.10: Revision 3 full PCB. A, wireless headstage. B, Active broadband
EMG probes, as used in Delsys Bagnoli. Each includes a MAX4208 instrumentation
amplifier G = 20 dB with one-pole highpass at 1.3 Hz, one-pole noise-reduction
lowpass at 4.8 kHz, followed 2 successive HP/LP poles and an additional gain of 25
dB. C, isolated EMG digitization using a Microchip MCP3304 4-channel ADC. D,
Interface buffers between 2.8 and 5V systems. The rest of the area is consumed by
the microstimulator, as detailed in Chapter 3.

I built the device in the first place – see appendix B for a description).

Though the microstimulation section of this design has worked well in several

experimental setups for well over a year, putting everything on one board is not

without compromise. In order to keep the aspect ratio on the plated through vias

underneath the 0.5 mm pitch ball-grid array DSP, the thickness of the board had to

be reduced to 47 mil (1.2 mm). This permits the board to flex substantially more

than normal 63 mil FR4, leading to a few traces to delaminate on some boards.

Future revisions will be careful to preserve rigidity for larger designs.

4.3.4 Revision 4

At the time that it became obvious that the LMV1032 chips were not going to

work because of mechanical issues, Intan technology under Reid Harrison announced
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Figure 4.11: Revision 4 full PCB. A, Intan RHA2116 on top (red) and bottom
(green) of board, not aligned. B, Poor routing choice. C, separate buck converter,
to be mounted on the battery. Remainder of board is debug / program / interface.
Total size = 7.36 x 5 cm; wireless size = 3.05 x 1.87 cm. Board made for high Tg
FR4, 1.4 mm thickness, 6 layers, 5 mil trace/space.

commercial availability of their 16 channel integrated biopotential amplifiers. The

wireless recording system was promptly redesigned (again) to feature two of these

chips, each with an amplification of 200, variable band-pass filtering, and multiplex-

ing. Figure 4.11 shows the resulting design, again with debug and programming

circuitry that can be jettisoned via Dremel.

These devices worked well, finally, but were not without issues. Two high-speed

serial lines used to read the firmware from the flash memory were routed around and

within 5 mil of vias connecting the Omnetics connector to the amplifier on the back

of the chip (Figure 4.11 B); because both the radio and flash memory were on the
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same SPI bus, these lines were very active during transmission. The lines coupled to

and corrupted electrode traces through capacitance and soldermask leakage currents.

This particular problem was difficult to isolate, as it was my full expectation that

RF energy was influencing the new Intan chips, much the same was that cell phone

GSM signal, which is envelope modulated at 216 Hz, can be received by a poorly

shielded stereo. The routing issue was fixed with a jumper.

One problem was never fixed. Through out these tests, the USB interface was

set to emulate a serial port but could never be made to operate reliably.

4.3.5 Revision 5

USB was hence abandoned for ethernet; despite (or because of) the additional com-

plexity, it is very reliable, and easier to write client software for as well. The design

then split into both a transmitter (the wireless headstage) and wireless to wired

bridge. The latter was based around a 600 Mhz Blackfin BF527, attached to a

LAN8710A 10/100 ethernet PHY through the standard MII interface. To permit

data buffering or more complicated tasks, 256 Mb of SDRAM was placed on the

board (16 bits by 32 Mwords); as every good electrophysiologist uses his ears, an

stereo audio output was also included. See Figure 4.12.

Revision 5 worked successfully, but the radio link proved to be highly unreliable

in realistic environments, even when tuned to 2.524 Ghz6 (the maximum possible

using the nordic chip – and well away from the water absorption / WiFi / Bluetooth

/ ZigBee bands). The reason for this was twofold: multipath (RF reflecting off

walls, metal objects) and linear polarization. Antenna diversity was chosen rather

than circular antenna polarization as per (Miranda et al., 2010)– it is both simpler

to design and more reliable. Furthermore it was realized that one Blackfin could

control up to 128 channels with greater power and area efficiency, so the transmitter

6 Actually, this band is owned by Sprint. oops.
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Figure 4.12: Revision 5 full PCB. A, Wireless EMG, 8 channels based around
MAX4208 again, without active channels. Processing is done on a BF532, as in neural
headstage, and uses the same Nordic radio. Device functions well. B, Ethernet jack
with magnetics included. Immediately to the right (with 4 die ground pads) is the
LAN8710A. C, USB port. The BF527 has support for full USB 2.0 high-speed (480
Mbps), but this has only been used for power. D, Audio output. Below is the DAC
(AD5663) and headphone driver (LM4808). E, Header for Sparkfun nRF24L01+
radio subassembly, as used on revision 1. F, Buck converter, 5 V to 3.3 V and 1.2
V. H, Wired digitizing headstage. Works, but never used. J, wireless headstage,
with routing errors fixed. K, Power supply for mounting on lithium-ion battery. L,
Isolated interface for wired headstage. Used to eliminate ground loops5 Total size =
19 x 9.5 cm. 63 mil thick, high Tg FR4, 6 layers.

was redesigned.

4.3.6 Revision 6

This is almost the final revision – see the description of the bridge in Figures 4.13,

and the associated 128 channel wireless transceiver in Figure 4.14.

4.3.7 Revision 7

This is the most recent version. It fixes two major issues: (1) there was no way to re-

flash the transceiver after debug circuitry had been removed, which is unfortunate as
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Figure 4.13: Revision 6 full ’Bridge’ PCB. All but the same as revision 5, except
for: A, High-speed impedance-matched isolated serial link, for use with the wireless
transceiver in wired mode. B, Prototype wireless 16-channel microstimulator. Never
fully investigated for lack of time / help. C,D,E: location of Nordic radio subassembly.
Devices shared the SPI bus, barely not overloading it (rise/fall τ = 11 ns with a
10Mhz clock), with individual chip selects and IRQ lines. Total size = 14.7 x 10.6
cm.

the software is constantly changing and (2) Bridge was designed for remote operation

(in the monkey rooms) via power-over-ethernet (PoE), and testing a commodity

unisolated PoE adapter destroyed two bridges.

4.4 Software

A very appreciable segment of this project was the creation, testing, and inevitable

rewrite of the software involved in recording system. There are 4 principal parts:

transceiver firmware, bridge firmware, sorting client, and BMI software.
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Figure 4.14: Revision 6 full 128 channel wireless PCB. A, Digitizing headstage
using one Intan RHA2132 and a ADCS7476 ADC. Parts were mounted only on
one side of board to permit stacking on tightly-arrayed electrode connectors. These
connect to the processor through 9-pin (extra pins so that if orientation is wrong,
nothing breaks) Omnetics nanominiature connectors, B, which were quite difficult to
source and should be replaced. C, Connector for high-speed serial interface for wired
use. D, Blackfin processor, here clocked at 400 Mhz at 0.95V. E, Buck power supply,
properly integrated into headstage as opposed to the battery. F, Debug circuitry:
JTAG and FLASH headers. G, Ground plane cut to avoid ground transients from
interfering with digitizing headstages. Dimensions: Digitizing headstage, 1.37 x 2.15
x 0.16 cm, Processor and wireless, 4.3 x 2.1 x 0.34 cm. Fabricated on 0.68 mm thick,
high Tg FR4, 6 layers.
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Figure 4.15: Revision 7 full ’Bridge’ PCB. A, Power-over-ethernet circuitry, based
around a Texas Instruments TPS23753. This is the first revision and stability of the
optically-isolated feedback loop needs to be optimized a bit, along with switching
EMI. B, Display was added to the backside of the board to present information,
namely the IP address of a given bridge. This has been rendered irrelevant by the
implementation of service location protocol (SLP) in the bridge firmware. C, JTAG
and flash programming hardware, through Omnetics 9-pin nanominiature connectors.
The remainder of the board is relatively unchanged from the previous revision. Total
size: 7.7 x 11.0 cm.
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Figure 4.16: Revision 7 full ’Bridge’ Assembled. Power consumption is 925 mW
from a 5 V supply, 1.4 W from 36 V PoE.

4.4.1 Transceiver firmware

Firmware running on the transceiver was prototyped extensively in C with revisions

1, 2 and 3 hardware, and was converted to assembly for the remaining hardware
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Figure 4.17: Revision 7 full transceiver PCB. A, Connectors for writing firmware
to flash and JTAG, on top and bottom of board, respectively. JTAG connector is
not normally populated. Digitizing headstages are identical to last revision. Power
consumption is 264 mW from a 3.7V battery. Processor and wireless size: 4.06 x 2.1
x 0.34 cm.

revisions. The present firmware is 12.6 kB and fits easily in the 48 kB available,

hence the processor has only a single-stage bootloader.

The firmware has effectively two threads: one for reading in samples from the

ADCs, and one for handling radio transmission. The threads communicate via a

1024-byte, 32 packet circular buffer, and are interleaved using the program counter

(PC) to hold state; all other registers are clobbered by the filtering routines. That

is, the radio control program (which implements the protocol in 4.2), fills the SPI

read or write registers and changes flags to the radio, then calls the ADC servicing

routine, which blocks until a sample is read and has been fully processed; it returns

via return-from-subroutine, which permits state to be saved in code location rather

than variables or on the stack as with typical software threads. Provided the total
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Figure 4.18: Revision 7 full wireless transceiver Assembled. Digitizing head-
stages are protected by heat-shrink tubing, and connected to the processor and radio
through a 7.6 cm 9 conductor wire to better fit in the monkey’s headcap.

codepath does not exceed 400 clocks (the processor is running at 400 Mhz, and the

ADCs sample at 1 Mhz), everything proceeds lockstep at 1 µs increments, and little

time is wasted. All persistent variables that do not have their own registers, such as
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the number of packets enqueued, are stored in fixed offsets from the frame pointer

to permit one-cycle access latency.

Four samples from each of the 4 ADCs are read at once; as the blackin works

efficiently with two 16-bit samples at once, two samples (from two of the 4 headstages)

are then processed at a time. These two come in at 12 bits unsigned, and must be

converted to 1.15 signed fixed-point, which is done by pre-gain (usually 4) followed

by an integrator highpass stage. The transfer function of the highpass stage is

Hpzq “ 4p1´z´1q

1`pmu´1qz´1 ; the normal value of mu is 800/16384, which places the -3 dB

cut at 250 Hz. This is followed by an AGC stage which applies a variable gain 0-128

in 7.8 fixed-point format; the absolute value of the scaled sample is compared to the

AGC target (stored as the square root to permit 32-bit targets) and the difference

is saturated at 1 bit plus sign7. This permits the gain to ramp from 0 to 127.999

in 215 clocks, or about half a second, which is a bit too quick especially with very

bursty neurons. In the future we may change the saturation behavior to permit

slower attack / release on the AGC. This can, of course, be disabled once a suitable

gain is found by setting AGC sat to zero. A diagram of this logic is in figure 4.19.

The next step is LMS adaptive noise cancellation see Figure 4.20. The delayed

samples for the FIR part of the LMS filter is shared with the delays in the IIR filters,

to be discussed below, which saves both time and space. As addressing is simply a

fixed offset into the delay circular buffer this means that the last 7 channels scanned

are used to predict the present channel (e.g. if the present MUX channel is 14,

channels 7-13 are used for noise cancellation). Adaptive weight update proceeds in a

pseudo-normalized LMS method: incoming samples are saturated following a variable

gain and saved to the circular delay buffer; weights are decayed, then updated by

the product of 1-bit saturated sign of the error, the saturated delayed sample, and

7 As it is a 1-bit semi-stochastic weight update, AGC does not have an analytical transfer function;
stability is not guaranteed, but has proven reliable over about a month of recording.
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Figure 4.19: Integrator and AGC, first two steps in filtering pipeline. See text
for details. In this figure and following all blue text indicates values that can be
configured over the wireless link.

a small scaling factor (3). That is: if both the error and sample are the same sign,

the weight increases (Hebb’s rule). This permits the filter to be computed in 9

clocks, including register preload, and weight update to proceed in 15 clocks. Again,

since this is involves saturation and 1-bit weight updates, it is not analytical, but in

practice the filter settles to final weight values within 4 s. The filter offers 40 dB of

noise rejection, and can be disabled by setting decay to 0.

LMS is followed by 8 poles of fully software-configurable IIR filtering. As men-

tioned above regarding revision 1, these are implemented as modified Direct Form

I filters. As the 4 biquads run back-to-back, taps are shared between stages – see

Figure 4.21. We’ve found that normal Butterworth filters are best for neural record-

ing; although Elliptic and Chebychev filters have faster edge falloff and stop-band

attenuation, they tend to ring and exhibit phase distortion, which is unacceptable

when waveform shape is critical. By scaling the coefficients on the low-pass stages,

it is possible to get further gain on the signal, which is useful when AGC gain is

kept low by large EMG or microphonic contamination (subsequently removed by
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Figure 4.20: LMS noise cancellation filter. In the notation: n is the sample number,
c is the channel number 0-31, % indicates modulus, and boxed values are stored in
circular delay buffer. LMS update step in the bracket (decay, update with product
of saturated sample and error) is repeated 7 times, but only one is shown for clarity.

LMS). The 4 stages take exactly 27 clocks and typically implement a bandpass with

passband from 500 Hz to 6.7 kHz. They may be disabled by writing the appro-

priate filter coefficients, or more interestingly set to oscillate. This can be done by

writing coefficients that satisfy ypnq “ p2 ´ fqypn ´ 1q ´ ypn ´ 2q, or equivalently

0 “ Y pzq ´ p2 ´ fqY pzqz´1 ´ Y pzqz´2, which has poles on the unit circle at angle

ω “ anglepp2 ´ f ˘
a

f 2 ´ 4fq{2q, where ω is the frequency of oscillation, in ra-

dians/sample. This unintended feature has proved essential in debugging template

matching, radio transmission, and other parts of the signal path; it is very obvious

when a sample is dropped or misplaced in a sine wave, unlike in a neural trace.

As mentioned, two samples are operated at a time using the Blackfin’s dual-

MAC architecture, hence the signal path above (integrator Ñ AGC Ñ LMS Ñ IIR)

must be done twice to process all 4 simultaneous ADC samples. These 4 16-bit

samples are then converted to unsigned 8-bit integers, packed into one 32 bit word,

and written to the appropriate position within the circular delay buffer. Template
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Figure 4.21: IIR filter, 4 biquads. Like the rest of the signal path, all coefficients
are set individually for each of the 128 channels.

matching then uses the SAA instruction, which accumulates four different sums of

absolute difference between vectors of unsigned bytes. SAA was explicitly designed

for MPEG compression, where a critical step is measuring the per-pixel and per-color

differences between video frames, but it works equally well for comparing neural

waveforms to templates. The SAA instruction yields one value per channel, which

is then compared to a software-defined aperture; spikes are accepted if the summed

absolute difference is less than this aperture. Four templates on the four simultaneous

channels are computed at the same time, which requires 22 clocks for a length 16

(512 µs) template, including bit manipulations to pack the template matches into

”sticky” bits for radio transmission. Two templates are matched per channel per

sample, hence each transceiver features 256 16-point 8-bit template vectors, all set

by the user. Note that this is effectively convolution, and there is no threshold step;

a rigorous study of how this compares to threshold-based sorting has yet to be done.

Figure 4.22 graphically depicts this algorithm.

The next step is to collate and packetize the data into an outgoing radio stream.

The Nordic radio features an over-the-air rate of 2 Mbps, but has a free-running PLL

which loses sync after 4 ms, putting a limit on continuous transmission. Furthermore,

the radio sends maximally 32-byte packets from a 3-deep transmit and receive FIFO.

To fit within these constraints 6 samples from each of 4 channels (24 bytes) are packed

with 8 bytes of template-match information. As 8 bytes corresponds to 64 template
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Figure 4.22: Template matching using the SAA instruction. Apertures and tem-
plates are set via client software and transmitted wirelessly. As there are two tem-
plates per channel, the algorithm runs twice.

matches out of 256, all template matches are transmitted every 4 packets, or 24

samples. With the ADCs running at 1 Msps, a new packet is produced every 192

µs, and all templates are sent (and their sticky bits cleared) every 768 µs, which is

sufficiently higher than the maximum expected firing rate.

Sixteen packets are assembled into one frame, after which the transceiver goes into

receive mode to listen for any commands from the control software. One frame lasts

exactly 3.072 ms, which is less than the 4 ms PLL free-run time; the time to transmit

these 16 packets, transition to receive mode, receive a packet, and transition back is

3.60 ms, hence the radio is being used at 99.6% of its maximum. This corresponds

to an outgoing bandwidth of 1.333̄ Mbps, and an incoming bandwidth of 83.33̄ kbps.

To enable the bridge to time transmission of control packets properly, extra bits

are needed within the transceivers packets. For this we make the simplification that,
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Figure 4.23: Transceiver outgoing packet structure. Match registers mA(), mB()
are from bottom of figure 4.22. The pointers tx0 - tx3 are software set, along with
the echo nibble. Byte compression is done via an in-assembly look-up table, which is
itself written by a C program for calculating the lossy compression codes. Likewise,
packet number in frame and echo are converted from nibbles to 0x80808080 masks
via a LUT.

usually, two templates will not match one the same channel at the same time, and

that usually neurons will not be firing. These assumptions allow lossy compression

of 8 bits of template A/B match to 7 bits through a look-up table, thereby freeing up

8 extra bits in the 2 32-bit template match words. These 8 bits are used to transmit

packet number in frame and a 4-bit echo. See Figure 4.23 for a graphical depiction.

As shown in Figure 4.23, 8-bit samples are sent from arbitrary pointers, which like

the digital oscillator, has proven very useful in debugging the firmware. Four different

streams of any delay taps, internal state, filter weights, etc. can be transmitted

continuously at the sample rate via appropriate specification of the transmit pointers.

These transmit pointers as well as all the other values in blue in Figures 4.19

- 4.23 are set via packets from the bridge to the transceiver. The format here is

similarly simple, and consists of four pairs of 28 bit addresses and 32 bit values;

upon reception of these packets, the transceiver validates the addresses to lie within
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Figure 4.24: Schematic diagram of transceiver Ø bridge packet framing, with the
control packet highlighted in blue, and relevant SPI signals to the left of the repeat
sign.

working memory range, and writes the value to that address. The upper nibble of the

addresses is always 0xf, hence is replaced with 4 bits of echo value. This echo value

is sent back as in Fig 4.23 when the transceiver applies the changes requested in the

bridge’s control packets, permitting SEQ-ACK like exchanges as in TCP. Bandwidth

from the transceiver to the bridge features no such sequencing, as there is neither

memory, bandwidth, nor processing time to re-send dropped packets. Control packets

as shown in Fig. 4.24 are much more important and easy to re-send.

A final point to note is that the outgoing bandwidth is constant, which greatly

simplifies the transceiver firmware. More importantly it allows a guaranteed latency

to servicing samples for the ADC, because the code flow is fixed and can be analyzed

for longest-path. As mentioned earlier, the Blackfin is not optimized for jumps

or non-pipelined memory moves, both which would be required to send individual

waveform snippets, nevermind the fact that waveform snippets from 128 channels

would quickly overwhelm the 2 Mbps radio.

4.4.2 Bridge firmware

The bridge operates in a much less power and time constrained environment, hence

the code is written most entirely in C, and is relatively straightforward. There is no

OS, but unlike the transceiver, code runs from SDRAM and not L1 cache. Most of
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the code manages the relevant networking protocols – ARP, IP, DHCP (to get an

IP address on the network), ICMP (to shut down UDP stream when requested &

to respond to PING), UDP (to send raw data stream), TCP (control packets and

webserver), HTTP (webserver) and SLP (used to discover and configure bridges on

a local network).

When the bridge boots, it first configures SDRAM refresh, sets clocks (600 Mhz

core and 120 Mhz peripheral), and checks the SDRAM. Then the network interface

is brought up, and a DHCP lease is requested. If a DHCP lease is granted, the

bridge begins broadcasting its presence via SLP. If a client responds with the the

correct code and a radio channel to these broadcasts, the bridge turns the three

radios to this channel and pairs with the issuing IP address. It then remains in a

tight loop, servicing the radio and buffering individual packets into 512 byte ethernet

frames. Packets that do not match 16-bit CRC (as computed by the Nordic radio)

are rejected. The radio that most recently received a valid packet transmits the most

recent command packet when an end-of-frame packet is found (packet # = 15). No

bit-averaging or error correction is presently employed, though there is plenty of

processor headroom to do so. When recording from a monkey in a metal cage for

25 hours, including the normal range of movement, 1 in 3176 packets were rejected

on average; assuming one bit error per packet, this equates to a bit error rate of

1.23e-6, or approximately one bit error per second. Efforts to reduce this have not

been successful, but the system works acceptably presently.

Interruption-free audio output on the bridge proved a challenge in the face of these

dropped packets, as pulses or breaks in the audio stream could be falsely interpreted

by the ear as spikes. To prevent this, audio output is controlled by a PLL that

switches between three resampling frequencies, one slightly higher, one at, and one

slightly below the incoming sample rate. These two frequencies are toggled based

on the fill status of a 512-sample circular buffer, with sufficient headroom to prevent
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glitches following loss of 16 packets, or aggregate packet loss rates of 0.36% (ą 10

times the observed packet loss rate). The three tones are separated by 7.25 cents

each, which is very near the human threshold of detection of 6 cents for periodic

signals, and hence switching is completely imperceptible with the normal stochastic

signals.

The bridge is depicted in Figure 4.16; a schematic overview of the design to this

point is in Figure 4.25.

The headstage timestamps each packet as it is received with a 32-bit slice of the

64-bit performance counter on the processor; it would be better to timestamp on

the headstage, but there is insufficient radio bandwidth for that without sacrificing

analog channels. This clock runs at 600 Mhz / 216 = 9.1552734 kHz.

4.4.3 Sorting Client

The sorting client is written in C/C++ using the GTK2 GUI toolkit with OpenGL

and HLSL for graphics, presently exclusively on Debian GNU/Linux. It consists of

around 12600 lines of code, much for managing the GUI, displaying waveforms on

the screen, maintaining persistent state (using sqlite3, ala Mail.app and Android),

saving data, and communicating with clients.

Spike sorting on the client is very similar to that used by Plexon Inc’s SortClient

and OfflineSorter: raw traces are thresholded, waveforms are extracted around the

threshold, and a PCA projection is computed of these waveform snippets. Unlike

Plexon, threshold crossing can be moved in both time and voltage domains, which

permits considerably greater flexibility when centering a waveform within the rela-

tively narrow 16-sample template region. Threshold is currently positive-only, but

negative thresholds can be realized by inverting per-channel gain. PCA projected

waveforms are selected by the user via a polygonal lasso, and the mean and L1 norm

of this sample is computed. The former is sent to the transceiver as the template,
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Figure 4.25: Overview of the wireless recording system.

and the latter sets a guess at the aperture. Aperture can later be updated manually

by the user; as the aperture is changed, the GUI updates the color labels of the PCA

projected points. Figure 4.26 shows the sorting GUI.

Sorting in the client is somewhat complicated by the fact that the transceiver

does not specify which of the 24 possible set of samples matched a given template.

To cross-check sorting between the transceiver and client, the latter convolves the

known template with the last 24 continuously transmitted samples, finds the best,
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Figure 4.26: Screenshot showing client and BMI software. A, Waveform display;
templates are lightly visible in purple and orange. Four channels may be sorted at
the same time. B, PCA view with user lassoed cluster. C, BMI client for selecting
units to be operantly conditioned. D, Local display of monkey’s screen. E, GUI for
setting parameters on transceiver. Channels 32, 37, 38, and 70 are currently selected,
with varying post-LMS gain.

duplicates the SAA algorithm and verifies against the known aperture.

The client maintains an iterative estimate of the clock skew between the com-

puter’s performance counter and the timestamps received from the bridge using a

standard PI controller. Interspike interval, binned at the 768 µs spike sample rate,

is from this clock estimated and plotted on the screen. Likewise, bridge timestamps

are recast to computer time for sending to clients. These timestamps are displayed

in the bottom pane of Figure 4.27.

Packets coming from the transceiver are already sufficiently compressed, so these

in addition to client clock and bridge clock are saved directly to file when recording.

Outgoing packets are similarly saved in the file stream, along with ASCII versions

of the commands. Commands to the transceiver are sufficiently complicated that it

would be unreasonable to duplicate the code structure required to reinterpret them,
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Figure 4.27: Screenshot showing client in rasters mode. A, Waveform of 4 con-
tinuously transmitted channels. B, Rasters of all 128 channels, two of which have
been sorted for units A & B. C, GUI pane for setting the tap in the signal chain to
examine, controlling gains, AGC, LMS, and filter bandwidth.

hence these human-readable messages are spliced into the stream.

The Sorting client optionally sends firing rates to requester through a TCP/IP

socket. Firing rates are estimated by convolution with

xptq “ γ
t

t4 ` α

Where γ “ π
4
?
α

. Typical values for α “ 0.001, resulting in the curve in Figure

4.28. This process is asynchronous so the BMI display may refresh as fast as the

computer can run it.

4.5 Testing

The wireless recording system was mounted in a custom-designed headcap system

(see Figure 4.29 and 4.30) and tested initially while the monkey was seated in a

primate chair, then later while the monkey was in a custom-designed plastic cage.
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Figure 4.28: Kernel for estimating firing rate.

This was abandoned once it was realized that the radio worked acceptably well

through the walls of the monkey’s home cage (see Figure 4.31). An example recording

session is shown in Figure 4.32; to date 14 days of recording have been made for 110

GB of compressed data.

4.5.1 1D BMI

The initial BMI tested was a simple 1D task, where the monkey had to modulate the

firing rates of a few neurons to move the cursor left and right on the screen. This is

operant conditioning as Fetz and Schmidt did decades ago, and as they discovered,

it was not difficult for the monkey to learn. Figure 4.33 shows example behavior.

Both BMIs the monkey was in his home cage, with a juicer (powered by a General

Motors windshield washer pump, with a backflow prevented by the valve from a

squeegee bottle) mounted to the cage front. Positioned in front of the cage is the
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Figure 4.29: Headcap system for housing batteries and wireless system.

Figure 4.30: Wireless system mounted in headcap. Only one battery is used, but
there is space for another. To replace the battery only one screw needs to be remove,
which a trained monkey tolerates easily.

LCD monitor & computer setup, so that when the monkey is drinking from the juicer

he has to face the screen. Cursor and target appear as circles on the screen, and

the cursor must be held in the target for a variable length of time before juice is

175



Figure 4.31: Home cage wireless recording and behavioral setup. A, Bridge in a
waterproof Pelican case;. B, Housing for monitor and computer. C, Webcams. D,
Juice bottle case with pump. E, Juicer with IR detector.

rewarded. The juicer was instrumented with an IR detector so that when he was

not attending to the game the juicer was disabled; the game itself continued, so as

to provide control data. The monkey would routinely do 2500 to 3500 trials per day

because this was his only source of water. Much of this work was done at night, when

presumably there were no other distractions8. The experiment was monitored via

webcams which streamed data to the downstairs office. Once the setup was working,

all manipulations were done through the ethernet connection, and all that needed to

be done was to refill the juice and replace the batteries once a day.

To determine if the monkey is actually controlling the cursor or merely waiting for

it to spontaneously enter the target, latency and distance to target acquisition was

measured, as well as cursor occupancy. See Figures 4.34, 4.35, and 4.36. Notably,

to make these modulations the monkey initially learned to throw back his head,

8 Upon observing this, the beeper for the juicer was turned off to avoid waking the other monkeys.
The windshield wiper motor makes enough noise for the monkey to know when to expect juice.
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presumably activating neck, shoulder, and hand muscles to keep himself from falling

backwards in the cage. In later sessions, as shown in Figure 4.33, he learned to make

isometric contractions that were not visible via webcam.

4.5.2 2D BMI

One the monkey achieved reasonable performance on the 1D BMI, control was tran-

sitioned to two dimensions. Unfortunately, there was only time to perform four days

of training and behavioral shaping on this more difficult task, so the monkey only

partially demonstrated convincing levels of cursor control. See Figure 4.37, 4.38, and

4.39.

In Figure 4.37 note relative higher occupancy for the lower right target – this

was difficult for the monkey to hit, as it required increasing the firing rate of X

group without increasing that of Y . For this experiment, the firing rates of 6 clearly

isolated single units was summed to control the X axis, and a set of 6 others was

used to control the Y axis. Biases are apparent in the upper left and right targets,

but these proved to be nonsignificant once target size was accounted for.

There exists a chance that the significant result in Figure 4.39 is due to behavioral

bias, as the monkey was likely to lose interest in trials that were taking too long,

hence longer randomly-occurring trials were more likely to be unattended. If this

were true, however, the same bias should be apparent in Figure 4.38. It is therefore

likely that the monkey was starting to learn this new random coordination task.

4.6 Discussion

A wireless recording system has been designed through the course of several itera-

tions, and is demonstrated with an operant conditioning task and a simple 2D BMI

from and unrestrained primate from his normal metal home-cage. Though testing

only includes one transceiver in one monkey, the system should easily scale to 256
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Table 4.1: Wireless recording system specifications

Parameter Value
Channels 128

Maximum # channels 2560
Sorting method Templates

Templates per channel 2
Power consumption 264 mW

Battery life ą 30 hrs9

Input-referred noise 4.9 µ Vrms
Analog Gain 200

ADC resolution 12 bits
LSb of ADC 3.66 µV

Sampling rate 31.25 ksps / channel
Outgoing radio B/W 1.333̄ Mbps
Incoming radio B/W 83.3̄ kbps

Size: -
Digitizing headstages 1.37 x 2.15 x 0.16 cm
Processor and wireless 4.3 x 2.1 x 0.34 cm

channels and more; the radio itself, with 4 Mhz guard bands, is capable of support-

ing up to 20 simultaneous streams, or 2560 channels. The system features template

based sorting on the transceiver itself, which greatly reduces required radio band-

width, and is capable of transmitting 4 continuous channels alongside the template

matches. Unlike many other neural recording systems, the radio is bidirectional so

that the user and client computer may set parameters on the transceiver. The device

is capable of running for over 30 hours on one commodity lithium-ion rechargeable

battery. A list of the relevant specifications is in table 4.1.

The recording system offers a number of improvements and advantages for mon-

key electrophysiology.

• Easier – Requires only changing the batteries once a day.

• More data – The animals can work many hours a day.

• Better behavior – Animals are more relaxed and comfortable.
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Table 4.2: Wireless power consumption breakdown

Component Power Percentage
Blackfin core 118 mW 44%
– static current 12.3 mW 4.7%
– dynamic current 106 mW 40%
Intan amplifiers10 60 mW 22%
Radio 34 mW 16.3%
Buck conversion loss 18 mW 6.8%
Misc. static currents11 13.3 mW 5%
Driving digital lines 12 mW 4.5%
ADCs 9 mW 3.4%

• More channels – The system is scalable to thousands of channels.

• Recording during sleep.

• Continuous recording – As neurons are recorded continuously their identity can

be better assured.

• Higher quality recording – There are no ground loop problems, and 60 Hz /

microphonic / EMG noise is adaptively removed by LMS.

All is not perfect, though: several immediate improvements are due. The primary

is that of power. Table 4.2 lists the power consumption of the transceiver by compo-

nent. Clearly, the largest component is the Blackfin; replacing it with an low-power

FPGA may be a good alternative, though it may not as the heavily used multiply-

accumulate units on the Blackfin are likely to be more power-efficient per operation

than an unoptimized FPGA multiplier. Simplifying the software and lowering the

clock rate and core voltage of the Blackfin may be a reasonable alternative; clocking

the Blackfin at 320 Mhz at 0.85 V reduces the dynamic core power to 60 mW. This

would reduce total power to 224 mW which is under the heat flux of 80 mW {cm2

found to cause necrosis in muscles (Seese et al., 1998).

Training on the 2D BMI task proved sufficient to demonstrate recording system
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functionality but little more; it seems likely that this is a matter of time. Ganguly and

Carmena (2009) found that it took his monkeys 3-8 days to learn a fixed-transform

consisting of a shuffled decoder, which is similar to (but perhaps more difficult than)

the summed firing rate task employed here. However, their monkeys were well trained

on the task; though the monkey here has been used in a number of experiments by

Joseph O’Doherty, these were all with BMIs using supervised training from hand

movements, hence the task of learning a transform de novo was new to him. Given

how many tries to get the wireless system to an acceptable state, it is not surprising

that the first pass of an many-neuron two dimensional operant-conditioning task did

not succeed in the first 4 days. Future work will work out the problems; one promis-

ing avenue is to examine the correlative structure of the neurons over behaviorally

relevant timescales (all neurons are correlated over long timescales (Jackson et al.,

2007)), and select groups correspondingly.
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Figure 4.32: Waveforms from a 3.3 h 128 channel wireless recording session. Many
single and multiunits are apparent.
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Figure 4.33: Example 1D BMI behavior. Blue = cursor, red = target, black =
IR sensor on juicer. When the IR sensor is above 0.5 V the monkeys mouth is on
the juicer. Note that to the left the monkey is controlling the cursor, and is making
periodic left-right movements; to the right, he stops paying attention and the cursor
is notably uncontrolled. In this experiment cursor position was the summed firing
rates of two clear single units.
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Figure 4.34: 1D BMI latency to target. Blue = monkey attending to task, red
= not attending. Attending distribution is notably bimodal, as the monkey will
attempt a second pulse if he misses (or does not hold long enough) the first time.
Not-attending distribution has a peak shortly after the hold + reward time of 0.5 s,
as firing rate modulations due to normal sleep and movement are sufficient to drive
the cursor to target on occasion. Distributions different by K-S test, p ă 0.001.
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Figure 4.35: 1D BMI distance of path to target. Blue = monkey attending to task,
red = not attending. Again, attending distribution is notably bimodal for try-again
trials. Not attending distribution is broader and larger. Distributions different by
K-S test, p ă 0.001.
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Figure 4.36: 1D BMI cursor occupancy. Blue, left target on screen; red, right
target. Note for left target the monkey frequently pushes cursor against right wall.
Distributions different by K-S test, p ă 0.001.
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Figure 4.37: 2D BMI cursor occupancy. Each quarter corresponds to the time
when the monkey was paying attention and the associated target was on the screen,
e.g. lower left quarter is the occupancy when the lower left target was on the screen.
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Figure 4.38: 2D BMI latency to target. Blue, time to target while the monkey was
paying attention; red, time to target while not paying attention. Differences between
distributions are not significant by K-S test, p ą 0.05.
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Figure 4.39: 2D BMI distance to target. Blue, distance to target while the monkey
was paying attention; red, distance to target while not paying attention. Differences
between distributions are significant by K-S test, p ă 0.001.
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5

Discussion

The work described here is, almost to a fault, highly iterative. Though it was not

described, perfecting the microstimulator took many simulated designs and 5 full

assembly-and-test cycles to get to the point of a workable ’product’; the same holds

for the wireless recording system. Thorough iteration for the DBS work only occurred

after the majority of recordings, which is perhaps why this was less successful. Data

needs to be analyzed as soon as possible to correct for any errors in the experimental

setup, or to improve recording quality, or to modify the stated purpose. The tighter

this loop is brought the quicker structure can be built; I am certain there is math

behind this, but I have not extensively searched for it.

Slightly less generally, the literature review of BMI technology related work has re-

vealed a lot of redundant effort regarding recording systems, where each incompletely

builds on others. (Commercially available technology and open-sourced hardware de-

signs (Rolston et al., 2009a) are a notable exception to this.) This seems wasteful,

since thousands of man-hours and public taxpayer dollars are put into this research,

and in the case of physical designs rather than scientific results, much of the assem-

bled structure is imperfectly represented in papers; it may not be, if the published
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technologies are stepping stones to clinical or commercial application. All the utility

of a scientific fact can be contained in a good paper; all the utility of a technology

can be contained in a physical artifact. The lack of distribution of the latter1 leads

to dramatically slower structure-building2.

As overviewed in Chapter 1, there is a lot of very good work that should be used

in neurophysiology labs, but is not (Najafi’s designs come to mind, or Rizk’s system).

To combat this and to prevent a technological stillbirth I’ve tried to make something

that has utility beyond my own personal research interests; hopefully the lab, if

not more people, can use it. Before I leave Duke I’ll try to manufacture as many

wireless systems as the robot can make, and iterate as needed from the feedback that

experiments give.

Even less generally, there are vast possibilities for improvement to brain-machine

interface technology. The primary is electrodes & recording methodologies. Optical

methods, if tuned within the window that the brain is translucent to, would be

optimal, as they are the least invasive communication path. Voltage-sensitive dies,

two-photon imaging, or plasmonic gold particles (Zhang et al., 2009) offer promising

avenues. In slightly longer wavelengths, backscatter sensing (Towe, 2007) would be

impressive if the right RF band meta-materials could be made3. Beyond this, longer

and shorter wavelength EM waves either require too large antennas or ionize tissue;

that said, MRI uses quite long wavelengths and attains spatial precision through

quantum-magnetic interactions, so nothing can be ruled out. For example, recent

studies at Stanford show that biological tissue is relatively transparent to 1 GHz

1 which capitalism solves

2 Gregory Bateson astutely points out that communication, while typically focused on dealing with
non-redundant information (if the receiver knows what the message is, or the message is redundant,
there is no communication), actually makes the world more redundant : after communicating, both
the transmitter and receiver have the same information. Hence communication reduces the open-
system entropy.

3 I tried proposing this to the Duke microwave ’invisibility cloak’ lab, but they didn’t bite.
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frequencies, and very small antennas can be fabricated to receive the RF; while this

has been applied to miniature swimming robots (Poon et al., 2007), it could easily

be used in micro neural implants too.

Outside of EM, electrodes remain the best bet, and indeed literature suggests

many possible avenues. The most glaring problem is the mechanical impedance

mismatch between an electrode and the tissue it records. Electrodes need to be stiff to

enter the brain without crumpling, though, which led Harris and colleagues (2011) to

develop a nanocomposite electrode material which emulates sea cucumber skin. This

composite, made of cellulose nanofibers embedded in a controllable polymer scaffold,

undergoes a phase transition at physiological temperatures and becomes over 100

times less rigid once implanted. A much simpler solution to the problem is to make

the electrodes so fine and so small that their rigidity is minimal. Indeed, polymer

fibers smaller than 7 µm are effectively invisible to the immune system (Sanders

et al., 2000) and to macrophage attachment (Bernatchez et al., 1996), which has lead

Seymour and Kipke to design ’open architecture’ electrodes where putative recording

sites are spaced laterally off a penetrating shaft by 4 µm photoresist columns. This

produced an decrease in encapsulation, though it was not complete, possibly because

micromotion was still present, and the lithography did not permit actual recording

sites on these lateral sites. Another method of inserting pliant electrodes is to attach

the tip to a bit of steel, and accelerate it magnetically into the brain (Jaroch et al.,

2009), or to attach the electrodes and a stiff insertion shuttle with a hydrophilic

coating which releases after implantation (Kozai and Kipke, 2009), or to make the

electrodes themselves amplifying carbon nanotube transistors (Tian et al., 2010).

I have spent much time and effort reviewing electrode technology literature as

electrodes, more than anything else, are the limiting step. Thousands of neural

channels seem required for proficient BMI control, probably due to the probabalistic

nature of the brain (Deco et al., 2009), but thousands electrodes at current sizes
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displace a large volume of tissue – they will need to get smaller. They should also

get better, as excellent neural recording traces, as are possible with single sharpened

glass insulated electrodes, make the task of amplification and sorting trivial, or at

least well covered by existing technology. I do hope to work on this in the future, but

in the meantime the recording system can be improved, by replacing the DSP with a

FPGA as in (Zhang et al., 2011), reducing the noise and reducing amplifier current,

simplifying the transceiver firmware, or employing a lower power radio (Liu et al.,

2009). After extensive testing in the lab hopefully everything may be transitioned to

a low-power implantable ASIC; indeed, fully implantable neurosystems are beginning

to be available (Rouse et al., 2011). Implanting a wireless system would solve the

final, and somewhat ignored, cause of implant failure: infection. One likely reason

that the inverted or oblique electrode implantation technique (Kruger et al., 2010)

works is that the path of infection was long and the immune system had plenty of

space to prevent attack; likewise, acute recordings work because there is no time for

infection. Many of the implants in the lab fail not because electrodes or connectors,

but because of infection. While bulky, the system described could be implanted with

the headstages on the head, wireless in the chest, and an inductive power link around

the collar.

Regarding microstimulation, there are two areas that deserve investigation and

development. The first is making the microstimulator wireless, work which has al-

ready started (see Figure 4.13, though far better approaches exist (Arfin et al., 2009)).

The second is using out-of-band RF microstimulation below that needed to heat the

tissue but sufficient to activate neurons. Because RF frequencies can be passively

filtered and are actively ignored by the preamlifier, this makes true bidirectional

recording and stimulation possible. The capacitive nature of metal electrodes is an

advantage as well, as the impedance goes down with frequency hence only very low

voltages are required. Radio frequency treatment of psychiatric disorders is common
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in Russia (Richebe et al., 2005), and evidence shows that low AM band (500 kHz) RF

stimulation is rectified by the membrane, hence able to activate neurons (Cosman

and Cosman, 2005). Initial testing in humans has shown RF stimulation to elicit

effects similar to DC microstimulation (Alberts et al., 1972), but given all the media

fear regarding cell phone radiation affecting the brain, and other reports that RF

energy below the threshold for heating can damage nerves (Hamann et al., 2006),

caution must be exercised.

Around half of this dissertation was devoted to the Parkinson’s disease, DBS,

and in turn the basal ganglia; the other half to stimulating and recording technology,

begging the question: how are they related? The two fields are converging, notably

through closed-loop DBS, in which stimuulation is triggered on pathological activity,

and more generally through the fact that learning to control a BMI, like much other

motor learning, involves the basal ganglia. Jose Carmena, Rui Costa, and colleagues

recently demonstrated this very fact by training rats and mice to perform a simple 1-

D auditory feedback operant conditioning task, much like original rat BMI research

(Gage et al., 2005)4. Whereas acurte NMDA receptor block did not affect BMI

control, mice with cortico-striatal NMDA receptors were unable to learn to control

the auditory cursor (Koralek et al., 2012).

This is perhaps a first step in determining how the brain learns and internalizes

arbitrary associations, and how it develops new modes of sensorimotor control. BMI

is a wonderful window for looking in on the brain as it learns, and I believe treating

it as both a window and a clinical tool is the best future path for this subfield. Other

aspects of BMI research have been discussed with respect to possible improvements

and research avenues, but with the exception of electrodes, few directly offer new

horizons: many groups are working on them, with diminishing returns. Improve-

ment in decoder accuracy is one example – linear decoding captures at least 80% of

4 Which they didn’t seem aware of, or cite.
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the variance with less than 20% of the algorithmic effort. New ideas beyond pure

engineering optimization must be created; understanding how the brain coordinates

behavior, or the function of e.g. the Piper rhythm, or the role of proprioceptive

ventral-horn feedback, or if some neurons are more easily volitionally modulated 5,

or if a vectoral proprioceptive signal can be provided to engage faster supervised

learning (as in the cerebellum) – all these worthy venues of investigation.

Regarding DBS, the basal ganglia, and especially synchony and oscillation, there

is tremendous need for both critical, controlled experiments (as opposed to simple

open-ended observation studies 6), and for comprehensive organization of the experi-

mental results into competing hypotheses. The most recent ’vigorous tutor’ theories

behind basal ganglia function are convincing, but perhaps the same was thought of

the rate models at the end of the 1980’s; the theory needs to be cast in a critical light,

especially in reference to the complicated etiology of Parkinson’s and Huntington’s

disease. Furthermore, there is a large gap between intricate anatomical knowledge

of the basal ganglia and the simple models used to understand their function; this

needs to be remedied in the same way that complete models of the cortex are being

developed. In terms of electrophysiology, true understanding waits for simultaneous

recording of neurons in cortex, striatum, both sections of the pallidus, VA/VL and

CM/Pf thalamus, and STN, ideally ones involved in the same pathway during a

learning task. Progress on this front has recently been made (Feingold et al., 2011);

the limitation is, again, recording technology.

As difficult as all the problems surrounding BMIs may be, there seems to be

swelling interest, effort, and creativity toward making neuroprosthetics a reality, with

5 The motor cortex is far more than an output structure. It computes something, and recording
from the wrong set of neurons is perhaps like recording from the domino gates in an ALU of a
computer, or the valve noise of an engine: you may know how ’much’ of something is going on
(arithmetic or acceleration, respectively), but you do not know exactly how that thing is computed.

6 Hindsight is 20/20.
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my own fractional incremental contribution here hopefully helping to move toward

the goal.
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Appendix A

Co-author papers

A.1 The muscle activation method: an approach to impedance con-
trol of brain-machine interfaces through a musculoskeletal model
of the arm

For this paper, I performed recordings, helped create the musculoskeletal model in

Matlab, and wrote the BMI software, hereafter referred to as BMI3 – it was the third

revision of control software I had written, starting 2004-2005. Seven years later, it

remains in heavy use.
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The Muscle Activation Method: An Approach to
Impedance Control of Brain-Machine Interfaces
Through a Musculoskeletal Model of the Arm

Hyun K. Kim*, Jose M. Carmena, Member, IEEE, S. James Biggs, Member, IEEE, Timothy L. Hanson,
Miguel A. L. Nicolelis, and Mandayam A. Srinivasan

Abstract—Current demonstrations of brain-machine interfaces
(BMIs) have shown the potential for controlling neuroprostheses
under pure motion control. For interaction with objects, however,
pure motion control lacks the information required for versa-
tile manipulation. This paper investigates the idea of applying
impedance control in a BMI system. An extraction algorithm
incorporating a musculoskeletal arm model was developed for this
purpose. The new algorithm, called the muscle activation method
(MAM), was tested on cortical recordings from a behaving
monkey. The MAM was found to predict motion parameters with
as much accuracy as a linear filter. Furthermore, it successfully
predicted limb interactions with novel force fields, which is a new
and significant capability lacking in other algorithms

Index Terms—Brain-machine Interfaces, impedance control,
musculoskeletal model, neuro-.

I. INTRODUCTION

RESEARCH in brain-machine interfaces (BMIs) has flour-
ished with recent technological advances in measuring

electrical activity of populations of single cortical neurons
through chronic implants. There have been numerous demon-
strations of nonhuman primates controlling robots or graphical
cursors in real-time through signals collected from cortical
areas. These demonstrations can be divided largely into two
categories: either continuous control of position [1]–[4] or
discrete control of more abstract information such as intended
targets, intended actions, and onset of movements [5], [6].

In BMI systems that use the continuous control of position
strategy, much of the work thus far has treated the primate as
a pure motion source. This makes intuitive sense considering
that numerous studies show that much cortical activity is tuned
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broadly to higher level features of hand movement such as posi-
tion [7] and velocity [8], [9]. Using this approach, neural record-
ings have been used to predict hand trajectory with reasonable
accuracy [1]–[4]. This strategy has proved to be an appropriate
first pass at BMI, confirming the potential for decoding move-
ment features from cortical areas in order to drive neuropros-
theses for paralyzed patients.

In this paper, we discuss the next logical step—impedance
control of a brain machine interface. An introduction to
impedance control can be found in [10]. For the newcomer, it
can be briefly summarized as follows.

A motion source has infinite mechanical impedance. It is
the complement of a force source, which has zero mechanical
impedance. These ideal sources have behavior independent of
the load they drive. However, the mammalian neuromuscular
system is neither an ideal force source nor an ideal motion
source, and its mechanical impedance is far from either of
the two extremes. In fact, the neuromuscular system is highly
adaptive and can modulate mechanical impedance. Numerous
studies show that this modulation is essential for versatile
interaction with the environment [10]–[12]. For example, when
writing neatly on tax forms or soldering circuits, we increase
the stiffness of our hand movements for precise position con-
trol. When catching an egg or handling delicate objects, we
decrease the stiffness.

This stiffness along with the inertia and damping parameters
determine the static and dynamic interaction with objects and
are collectively referred to as the mechanical impedance of the
manipulator. In prior work on BMIs this impedance information
was lost. The decoding algorithms did not have mathematical
forms that could capture these aspects of motor performance.
The goal of the muscle activation method (MAM), which will
be introduced below, is to decode mechanical impedance (in-
tended inertia, damping and stiffness) from neural activity, so
that impedance control [10] can be implemented on a slave
robot, and the user’s intended impedance can be displayed to the
environment. If successful, this approach would give the neuro-
prosthesis user the sort of prosthesis control necessary to per-
form the wide range of tasks that interaction with objects de-
mands, whether that task is filling out a tax form or catching an
egg.

There are two general approaches to the problem of decoding
impedance. The approach one takes depends on a deep-rooted
argument in neuroscience about how motion is encoded in the
cortex. Does the cortex only specify high-level movement fea-
tures and leave the conversion of this relatively abstract repre-
sentation into muscle commands for neurons downstream, or

0018-9294/$25.00 © 2007 IEEE



A.2 Primate reaching cued by multichannel spatiotemporal cortical
microstimulation

For these experiments, I built the microstimulators used and wrote most of the

microstimulation control software and associated software ’glue’.
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Primate Reaching Cued by Multichannel Spatiotemporal
Cortical Microstimulation

N. A. Fitzsimmons,1,4 W. Drake,1,4 T. L. Hanson,1,4 M. A. Lebedev,1,4 and M. A. L. Nicolelis1,2,3,4
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Durham, North Carolina 27100

Both humans and animals can discriminate signals delivered to sensory areas of their brains using electrical microstimulation. This
opens the possibility of creating an artificial sensory channel that could be implemented in neuroprosthetic devices. Although micro-
stimulation delivered through multiple implanted electrodes could be beneficial for this purpose, appropriate microstimulation proto-
cols have not been developed. Here, we report a series of experiments in which owl monkeys performed reaching movements guided by
spatiotemporal patterns of cortical microstimulation delivered to primary somatosensory cortex through chronically implanted multi-
electrode arrays. The monkeys learned to discriminate microstimulation patterns, and their ability to learn new patterns and new
behavioral rules improved during several months of testing. Significantly, information was conveyed to the brain through the interplay
of microstimulation patterns delivered to multiple electrodes and the temporal order in which these electrodes were stimulated. This
suggests multichannel microstimulation as a viable means of sensorizing neural prostheses.

Key words: microstimulation; brain–machine interface; primate; somatosensory; discrimination; neuroprosthetics

Introduction
For more than a century, electrical stimulation has been used to
probe brain circuitry and function in both humans (Penfield and
Boldrey, 1937; Penfield and Rasmussen, 1950; Ransom, 1892)
and animals (Fritsch and Hitzig, 1870; Ferrier, 1873, 1875). The
effects of electrical stimulation depend on the location and pa-
rameters of stimulation. Stimulation of large brain areas typically
hinders information processing (Pascual-Leone et al., 2000;
Chambers and Mattingley, 2005; Kammer, 2006). Conversely,
stimulation of small areas, termed microstimulation, can evoke
motor and sensory effects that mimic the functional contribution
of the stimulated area (Tehovnik, 1996; Graziano et al., 2002;
Cohen and Newsome, 2004; DeAngelis and Newsome, 2004;
Tehovnik et al., 2006). In the 1950s, neurobiologists began
operantly conditioning animal behavior using electrical stimula-
tion of the brain as a conditioned stimulus (Doty et al., 1956;
Nielson et al., 1962; Doty, 1965, 1969) or a reinforcement (Olds
and Milner, 1954). More recently, microstimulation of sensory
areas has been shown to produce perceptual effects such as visual
sensation (Bartlett et al., 2005), biasing the perception of visual

motion (Salzman et al., 1990, 1992; Britten and van Wezel, 1998)
or face recognition (Afraz et al., 2006), and mimicking the so-
matosensory perception of flutter (Romo et al., 1998, 2000; de
Lafuente and Romo, 2005). Impressively, Talwar et al. (2002)
used microstimulation of the rat barrel cortex to guide rats
through a complex terrain. Although it is often difficult to prove
that animals experience perceptions during microstimulation,
microstimulation-induced perceptions have been demonstrated
in humans (Penfield and Perot, 1963; Brindley and Lewin, 1968;
Dobelle et al., 1976; Davis et al., 1998; Kiss et al., 2003; Ohara et
al., 2004).

With the development of multielectrode implants (Nicolelis
et al., 2003) and the concurrent advances of brain–machine in-
terfaces (Chapin et al., 1999; Wessberg et al., 2000; Taylor et al.,
2002; Carmena et al., 2003; Lebedev et al., 2005; Lebedev and
Nicolelis, 2006), there is renewed interest in microstimulation as
a means of providing the brain with an artificial sensory channel.
Such a channel could recover sensation lost because of a neuro-
logical disorder or it could convey information from sensors of a
prosthetic limb (Berger et al., 2005; Middlebrooks et al., 2005;
Lebedev and Nicolelis, 2006; Wickelgren, 2006). Although this
idea is intriguing, two critical issues must be addressed: (1)
whether such artificial sensation can be improved by using mul-
tichannel microstimulation, and (2) whether microstimulation
in this application is suitable for long-term usage. We explored
the first issue by testing the capacity of owl monkeys to discrim-
inate multichannel microstimulation of increasing complexity.
We investigated the second issue by testing the long-term efficacy
of microstimulation.

Two monkeys were previously trained in a reaching task in
which target location was cued by vibrotactile stimuli (Sandler,
2005). Here, skin vibration was replaced by microstimulation of

Received Dec. 7, 2006; revised April 5, 2007; accepted April 9, 2007.
This work was supported by the Defense Advanced Research Projects Agency, Defense Science Office, and the

Space and Naval Warfare Systems Center, San Diego Contracts N66001-02-C-8022 and N66001-06-C-2019
(M.A.L.N.) and by National Institutes of Health Grant NS40543 (M.A.L.N.). We thank Dragan Dimitrov for performing
the implantation surgery; Gary Lehew for designing the electrode implants; Aaron Sandler, Laura Oliveira, and Parag
Patil for surgical assistance; Ian Peikon for engineering and programming support; Steven Wise for reading the first
draft of this manuscript and providing excellent suggestions; and Susan Halkiotis for manuscript preparation.

Correspondence should be addressed to M. A. L. Nicolelis, Department of Neurobiology, Bryan Research Building,
Room 327E, Box 3209, Duke University Medical Center, 101 Research Drive, Durham, NC 27100. E-mail:
nicoleli@neuro.duke.edu.

DOI:10.1523/JNEUROSCI.5297-06.2007
Copyright © 2007 Society for Neuroscience 0270-6474/07/275593-10$15.00/0

The Journal of Neuroscience, May 23, 2007 • 27(21):5593–5602 • 5593



A.3 Unscented Kalman filter for brain-machine interfaces

I assisted with the experimental setup and recordings for this experiment. The un-

scented kalman filter Zheng Li created was implemented within the BMI3 framework.
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Abstract

Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators,
such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of
populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the
abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order
unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning
which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the
movement state variables with a history of n-1 recent states, which improves prediction of the desired command even
before incorporating neural activity information and allows the tuning model to capture relationships between neural
activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which
rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control
computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in
both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation.
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Introduction

Research on brain-machine interfaces (BMI) – devices that

directly link the brain to artificial actuators [1,2,3] – has experienced

rapid development during the last decade primarily because of the

expectation that such devices may eventually cure severe body

paralysis caused by injury or neurodegenerative disease [4,5,6,7,8].

A core component of BMIs is the computational algorithm that

decodes neuronal activity into commands that drive artificial

actuators to perform movements at the operator’s will. Signal

processing and machine learning techniques have been applied to

the problem of inferring desired limb movements from neural

recordings [9]. These include the population vector method

[10,11,12,13,14,15,16], the Wiener filter [3,17,18,19,20], the

Kalman filter [21,22,23,24], the particle filter [25,26,27,28], point

process methods [29,30,31,32], artificial neural networks

[18,33,34,35], and discrete state Bayesian approaches

[18,36,37,38]. Decoding methods using linear models of the

relationship between neural activity and limb movements, such as

the Wiener filter and Kalman filter, are most commonly used in

experimental research on BMIs. These methods cannot handle

non-linear models, which describe neuronal modulations better but

require more complex algorithms such as the particle filter [39], a

non-parametric recursive Bayesian estimator. However, along with

the power of particle filters comes a heavy computational cost,

which makes this approach difficult to implement in real-time BMI

systems. The space of possible non-linear models is vast, and

selecting an appropriate model – one that offers significant

improvement over a linear model while avoiding ‘‘over-fitting’’ of

parameters [40] – is a non-trivial task. Combined with the more

difficult software engineering involved, these factors explain the

rarity of non-linear models in real-time BMI implementations.

We propose a new computational approach for BMIs, the n-th

order unscented Kalman filter (UKF), to improve the extraction of

motor commands from brain activity. Our experiments showed

that this new approach offers more accuracy compared to methods

which use linear models while remaining computationally light

enough for implemention in real-time. This filter offers three

improvements upon previous designs of BMI decoding algorithms.

First, our filter allows the use of non-linear models of neuronal

modulations to movements (neural tuning models). Our experiments

demonstrate the increased accuracy of our quadratic model versus

the previously-used linear model. Second, our filter takes

advantage of the patterns of movements performed during the

execution of tasks. For example, a prosthetic used to aid in feeding

has to perform a stereotypical pattern of movements: the

prosthetic actuator moves back and forth between the user’s

mouth and the food items placed on a tray. Our approach uses this

stereotypic pattern to improve BMI output accuracy. Third, our

filter allows the relationships between neural activity and arm

movement at multiple time offsets to be used simultaneously.

These improvements were facilitated by extending the Kalman

filter in two ways. First, the unscented Kalman filter [41], which

uses a non-stochastic simulation method to approximate non-
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A.4 A brain-machine interface instructed by direct intracortical mi-
crostimulation

I made the microstimulator, wrote a good section of the microstimulator control

software (which Joseph O’Doherty extended considerably). This experiment also

used the BMI3 software.
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the environment, however, require conjoint processing of sensory 
and motor signals (Witney et al., 2004; Crapse and Sommer, 2008). 
Thus, the neurophysiological mechanisms underlying voluntary 
motor control in mammals are critically dependent on the affer-
ent innervation of the skin, muscles and joints (Ribot-Ciscar et al., 
2003; James et al., 2007). Indeed, the paucity of sensory signals 
available in current BMIs could be a factor limiting their future 
clinical usefulness.

Here we propose that future clinical neuroprostheses could be 
based on a bi-directional system in which motor control signals are 
extracted from the brain, using multi-electrode arrays implanted 
in motor areas, while tactile, proprioceptive and other useful sig-
nals, are sent back to the brain through spatiotemporal patterns of 
intracortical microstimulation (ICMS) delivered to sensory areas 
(Lebedev and Nicolelis, 2006). To advance this goal, we added a 
direct intracortical input to a BMI, based on multi-electrode cortical 
microstimulation used by a rhesus monkey for enacting arm reach-
ing movements (Figure 1A). This intracortical input instructed the 
direction of BMI-generated cursor movements.

INTRODUCTION
During the last decade, considerable progress has been made in 
research on neuroprosthetics – devices that attempt to treat neuro-
logical impairments and limb loss by interfacing intact neural struc-
tures with artifi cial devices that enact motor or sensory functions 
(Nicolelis, 2003; Lebedev and Nicolelis, 2006; Schwartz et al., 2006; 
Fetz, 2007). Sensory neuroprosthetics, such as cochlear (Merzenich 
et al., 1974; Fallon et al., 2008) and visual (Dobelle et al., 1978; 
Dagnelie, 2008) implants, make use of electrical stimulation of 
sensory neural structures to recreate afferent input and perceptual 
experiences. Motor neuroprosthetics, often called BMIs (Nicolelis, 
2001), transform neuronal activity recorded in motor areas into 
commands to move artifi cial actuators such as cursors (Serruya 
et al., 2002; Taylor et al., 2002) and robotic devices (Wessberg et al., 
2000; Carmena et al., 2003; Velliste et al., 2008), and for the func-
tional stimulation of muscles (Moritz et al., 2008).

Curiously, sensory and motor neuroprosthetics have developed 
largely in parallel, without attempts to build an integrated system 
with both motor and sensory capabilities. Normal interactions with 
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A.5 Future developments in brain-machine interface research

This paper discusses much work done in the lab. I’ve been privileged to help my

colleagues and co-authors with hardware / software / matlab analysis code.
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loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the
brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to
be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic
devices for humans, brain-machine interface research has to address a number of issues related to improving the
quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine
interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part
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Neuroprosthetics, to bring this new technology to clinical fruition.
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INTRODUCTION

Millions of people worldwide suffer from sensorimotor
deficits caused by neurologic injuries, diseases or limb loss.
According to recent data reported in Medical News Today,
five million people in the USA alone currently suffer from
some type of severe body paralysis.1 Currently, there is no
cure for such devastating cases of paralysis, for example
complete spinal cord injury (SCI).2 Meanwhile, treatment is
only partially effective in less severe cases.3 Neural
prosthetic devices based on brain-machine interfaces
(BMIs) hold promise to restore both partial and full body
mobility in paralyzed patients.4–10 BMIs bypass the site of
the neural lesion and connect the remaining healthy motor
areas of the brain, particularly the motor cortex, directly to
assistive and prosthetic devices that can take the shape of,
for example, robotic limbs or a full body exoskeleton. The
main idea behind BMIs is to employ the activity of healthy
motor brain areas, which in many cases of paralysis remain
capable of generating motor commands despite being
disconnected from the body effectors,11 to control artificial
tools that restore the patient’s mobility.

During the last decade, the field of BMIs has experienced
an explosive development.7,9 Hence, it has generated high
expectations among neuroscientists, physicians and patients
alike, regarding its potential clinical applications. A number
of BMI systems have been studied in rodents12 and
nonhuman primates.13–17 BMI technology also entered
human clinical research where both non-invasive EEG-
based systems5,18,19 and invasive BMIs based on brain
implants20–22 have been tested. Notwithstanding the success
of these pioneering experiments, a number of issues need to
be resolved before a fully functional practical neuropros-
thetic for long-term use can be built.7 These include: implant
biocompatibility issues;23 increasing the number of neural
channels of the recording system; improving BMI decoding
algorithms; building fully implantable systems; sensorizing
neuroprosthetic limbs; and extending the BMI approach to a
broader range of motor control tasks, especially tasks that
require lower limb control: bipedal walking24 and upright
posture control.25

The Duke University Center for Neuroengineering
(DUCN) has been at the forefront of BMI research on cortical
prosthetic devices for motor rehabilitation since this field
emerged about 12 years ago. At the DUCN, we have
developed pioneering BMI systems that enact a wide range
of motor functions, from arm reaching and grasping 13,17,26 to
bipedal locomotion24,27 in a variety of artificial actuators.
DUCN researchers were also the first to incorporate artificial
somatic sensation in BMIs.28,29 Here, we review the most
recent findings of the BMI initiative at the DUCN and discuss

Copyright � 2011 CLINICS – This is an Open Access article distributed under
the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the
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Appendix B

Yushin

B.1 Description

Yushin is a scrapyard pick and place robot constructed for the original purpose of

reliably mounting the 1.2 mm2 LMV1032 amplifiers on the original wireless recording

systems, as detailed Chapter 4. Its utility has extended beyond this, however, and I

would not have been able to quickly assemble the many boards for the lab without it;

humans have too much motor noise and fatigue too quickly to work with thousands

of tiny parts that all look the same.

The four-axis robot is able to assemble boards with 0201 package components (0.6

mm x 0.3 mm) and locates parts via a arm-mounted video camera. Surface mount

components to be placed are put within the robot workspace by double-sided taping

them to the carrier tape they are packaged in to a large sheet of metal or plexiglas;

placement does not need to be precise. On the arm is the vacuum pickup cannula,

which is offset from the camera by 10 cm. Calibration of this cannula offset (all

coordinates are camera-centric, like humans) is achieved either by a table-mounted

camera which looks up to locate the position of the vacuum cannula, or through
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a recursive sensory-motor loop. In the latter scheme, the robot locates the CoM

of a part, picks it up, rotates it 180˝, places it back down again, and re-assesses

the CoM. Any translation should be twice the error in the camera-to-cannula offset,

and hence is used to update the entries of the offset look up table. This table is

indexed by 4th axis (cannula rotation), and should be sinusoidal but is not because

of rotation-dependent static loading of the vacuum tube to the head.

B.2 Reflection

Some reflections are due following the creation of this device. With due respect for

both connectionism and cybernetics, the whole project is really just a series of feed-

back loops: servo drive feedback from rotor encoders, camera feedback from part

placement and part location on tape, feedback from the laser depth sensor; even

within each step there are error-correcting feedback loops, e.g. EM algorithm for

locating spots, simulated annealing for registering part locations. Each of these was

put in place by the last loop of all: me. I don’t think there was anything particu-

larly incredible about each of the loops added, only that they were iterative and at

times creative in locating or creating signals correlated with an error in question1,

hence permitting the error to be minimized under Newton-like linear methods. The

particular example of this is optical part location, in which the robot moves follow-

ing rough estimates of where ’register’ thinks a part may be. There is no need to

compensate for spherical aberration in the optics, or nonlinearities do to imperfect

polishing of the ballscrews.

Throughout the designs outlined in the thesis, relatively little hard math was em-

ployed; even for the DBS paper, most tests were validated / corrected with simple

1 Or alternately transforming the errors. An example of this would be if there was significant
backlash in the ballscrews on the X and Y axes of the robot. If it were consistent backlash it could
be removed by approaching each target endpoint with the same velocity and deceleration, thereby
making the robot trajectories more complicated but transforming variable error into a constant
error
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bootstrapping. For example, to make the waveforms look nice in chapter 4, I emu-

lated a massless, damped spring to upsample the 32-point waveforms, rather than

more complicated curve fitting using splines. The algorithm is less than 25 lines of

C, but achieves approximately the same result as splines without having to think

very hard. There were many similar quick-and-dirty unscientific or un-mathematical

hacks used in e.g. tuning the robot PID controllers (the actual inertia, winding in-

ductance, Kd, damping, resonant modes, etc. were unknown for the motors that I

had), but through guessing and parameter sensitivity testing the motors were made

to work. It’s all very ”hackish” and non analytical, which makes me feel a little

guilty, but I wonder if that is necessarily a bad thing.

The development of the wireless recording system proceeded in a similar, iterative

’fix the worst error’ way, and, well, it seems to have worked. Humans are unique

in that they can create and externalize these error-minimizing loops. One may

hypothesize that certain loops within the brain work in the same way, namely the

cortexÑ basal gangliaÑ thalamusÑ cortex, but this is almost too abstract to guide

practical experiments. This hypothesis can also be approached from an engineering

standpoint, in that the algorithms used to create feedback loops can be codified and

automated, perhaps by copying the human sensory-cognitive-motor system.

B.3 Images
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Figure B.1: Yushin pick and place robot. Device was purchased from a liquidated
plastics molding company in Florida, and was sold on ebay for $100; the robot weighs
« 500 kg. Freight shipping was $400. Yushin is approximately as old as I am.

Figure B.2: Back of robot.
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Figure B.3: Control computers. Left, realtime Linux servo control; center, board
layout & source part location; right motion planner and computer vision.

Figure B.4: Robot was bolted to steel I-beams from a Durham scrapyard.

Figure B.5: Work table assembled of pressure-treated 4x4 lumber. Table tends
to move with varying humidity and temperature, but system is stabilized by video
feedback.

207



Figure B.6: A. Red ringlight for uniform illumination of parts. Right center in
plastic block is a laser pointer recommissioned to measure height above part or
PCB. In this scheme, laser it turned on, camera integrates 4 frames of image, laser
is turned off, another 4 frames are integrated; ’on’ and ’off’ images are subtracted,
resulting CoM of laser spot estimated through EM optimization. Height above table
is then recursively estimated through sensory (laser) motor (Z-azis servo) loop, using
a lightly damped Newton’s method with stochastic guesses in cases with ambiguous
gradient information. Right is stepper motor with 26 ga spring-mounted needle
cannula for lifting and placing parts. Spring provides light setting force for picking
and placing, and compliance for the inevitable errors from the laser depth-finder.

Figure B.7: View of head showing wiring (which was removed or cut by the factory
liquidater), including the laser current regulator and stepper motor driver. Arm
power supply varies as the stepper moves, hence the need for the regulator.
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Figure B.8: Y-axis servo showing box for translating absolute encoder bus value
to simulated hall-effect transducers to permit servo commutation.

Figure B.9: Z-axis servo.

209



Figure B.10: Inside hall effect sensor simulator. Wires from the bottom are sol-
dered to 8 bits of an internal bus on the absolute position encoders on each servo
motor; wires to the top simulate hall-effect communtation sensors, and lead to the
servo drives.

Figure B.11: Vacuum pump. $25.

210



Figure B.12: Vacuum manifold. $2

Figure B.13: In humid North Carolina air, small parts (ă 0.008g) tend to stick to
the tip of the vacuum cannula. To fix this, the line to the cannula was switched be-
tween full vacuum and slight positive pressure, the latter which is generated through
a calibrated leak followed by a section of tube. The length of the section of tube
determines the positive pressure.

Figure B.14: Parker Automation servo controllers. Scrounged from other equip-
ment in the lab.
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Figure B.15: Y axis on the original robot was actuated through a cogged polyethy-
lene and kevlar belt, which proved to be both nonlinear and non-repeatable (pure
anisotrphy of motion can be corrected for with the camera), and was replaced with
a ballscrew purchased from ebay. Axial coupler was made with nylon-reinforced
washing machine hose.

Figure B.16: Wires destroyed by liquidating crew were repaired or replaced.
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Figure B.17: Software control of robot. Yushin performs all high-level control and
was written in Ocaml using functional reactive programming idioms; the unfortu-
nately named banger was written in C and controls the servo drives (’banging’ the
bits out through paralell ports), register was written in CUDA and manages the com-
puter vision tasks (part location), and the two running instances of video (written
in C++) manage the table and arm mounted cameras. All programs communicated
via TCP sockets, the port numbers of which are labeled on the arrows; video frames
are shared using shared memory, /dev/shm.

Figure B.18: Destination part location and rotation GUI in planning program.
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Figure B.19: Destination part location, rotation, and optical calibration GUI in
Yushin.
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