m8ta
use https for features.
text: sort by
tags: modified
type: chronology
{1445}
hide / / print
ref: -2018 tags: cortex layer martinotti interneuron somatostatin S1 V1 morphology cell type morphological recovery patch seq date: 03-06-2019 02:51 gmt revision:3 [2] [1] [0] [head]

Neocortical layer 4 in adult mouse differs in major cell types and circuit organization between primary sensory areas

  • Using whole-cell recordings with morphological recovery, we identified one major excitatory and seven inhibitory types of neurons in L4 of adult mouse visual cortex (V1).
  • Nearly all excitatory neurons were pyramidal and almost all Somatostatin-positive (SOM+) neurons were Martinotti cells.
  • In contrast, in somatosensory cortex (S1), excitatory cells were mostly stellate and SOM+ cells were non-Martinotti.
  • These morphologically distinct SOM+ interneurons correspond to different transcriptomic cell types and are differentially integrated into the local circuit with only S1 cells receiving local excitatory input.
  • Our results challenge the classical view of a canonical microcircuit repeated through the neocortex.
  • Instead we propose that cell-type specific circuit motifs, such as the Martinotti/pyramidal pair, are optionally used across the cortex as building blocks to assemble cortical circuits.
  • Note preponderance of axons.
  • Classifications:
    • Pyr pyramidal cells
    • BC Basket cells
    • MC Martinotti cells
    • BPC bipolar cells
    • NFC neurogliaform cells
    • SC shrub cells
    • DBC double bouquet cells
    • HEC horizontally elongated cells.
  • Using Patch-seq

{1401}
hide / / print
ref: -2016 tags: somatostatin interneurons review date: 02-11-2018 18:08 gmt revision:0 [head]

PMID-27225074 Somatostatin-expressing neurons in cortical networks.

  • Urban-Ciecko J1, Barth AL1.
  • High (~ 10hz) tonic (constitutive) firing rate. All GABA.
  • Somatostatin, a neuropeptide, is of ill-defined role. Unknown when it is released.
  • SST interneurons receive diffuse input from cortical pyramidal cells, but each synapse is of low strength.
  • SST intererneurons are frequently electrically connected through gap junctions, but almost never through electrical synapses. The resulting network can extend for hundreds of microns, and has been shown to cause synchronized firing when cells are active.
  • Common anesthetics (isoflurane, urethane) profoundly silence the SSTs.
  • Wide diversity of axonal and dendritic branching patterns, targeting both apical (20%) and distal pyramidal cell dendrites.
  • SST neuron activity is reduced in Dravet syndrome.
  • SST neurons have also been implicated in schizophrenia; affected individuals show decreased SST mRNA and mislocalization of SST interneurons.