m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
[0] Csicsvari J, Henze DA, Jamieson B, Harris KD, Sirota A, Bartho P, Wise KD, Buzsaki G, Massively parallel recording of unit and local field potentials with silicon-based electrodes.J Neurophysiol 90:2, 1314-23 (2003 Aug)

{1163}
hide / edit[4] / print
ref: Schmidt-1993.11 tags: Normann utah array histology silicon electrode array cats date: 02-23-2017 22:03 gmt revision:4 [3] [2] [1] [0] [head]

PMID-8263001[0] Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue.

  • Tried two different times:
    • one day before euthanasia
    • 6 month implant.
  • Tried three different implants:
    • Uncoated silicon,
    • polymide coating
    • polymide coating with SiO2 adhesion layer / primer.
  • The last was the worst in terms of histopathological response.
  • Chronic implants showed relatively restrained immune response,
    • Gliosis was found around all tracks, 20-40um.
  • Encapsulation was less than 9um.
  • Edema and hemorrhage was minor but present on a subset of all implants.
  • Acute (24h) hemorrhage was more severe -- ~ 60%; edema ~ 20%.
  • Chronic histology revealed considerable macrophages w/ hemosiderin (a complex including ferritin)
  • See also [1]

____References____

[0] Schmidt S, Horch K, Normann R, Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue.J Biomed Mater Res 27:11, 1393-9 (1993 Nov)
[1] Jones KE, Campbell PK, Normann RA, A glass/silicon composite intracortical electrode array.Ann Biomed Eng 20:4, 423-37 (1992)

{1368}
hide / edit[5] / print
ref: -0 tags: Leiber nanoFET review silicon neural recording intracellular date: 02-01-2017 03:32 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-23451719 Synthetic Nanoelectronic Probes for Biological Cells and Tissue

  • Review of nanowireFETS for biological sensing
  • Silicon nanowires can be grown via vapor-liquid-solid or vapor-solid-solid, 1D catalyzed growth, usually with a Au nanoparticle.
  • Interestingly, kinks can be introduced via "iterative control over nucleation and growth", 'allowing the synthesis of complex 2D and 3D structures akin to organic chemistry"
    • Doping can similarly be introduced in highly localized areas.
    • This bottom-up synthesis is adaptable to flexible and organic substrates.
  • Initial tests used polylysine patterning to encourage axonal and dendritic growth across a nanoFET.
    • Positively charged amino group interacts with negative surface charge phospholipid
    • Lieber's group coats their SU-8 electrodes in poly-d-lysine as well {1352}
  • Have tested multiple configurations of the nanowire FET, including kinked, one with a SiO2 nanopipette channel for integration with the cell membrane, and one where the cell-attached fluid membrane functions as the semiconductor; see figure 4.
    • Were able to show recordings as one of the electrodes was endovascularized.
  • It's not entirely clear how stable and scalable these are; Si and SiO2 gradually dissolve in physiological fluid, and no mention was made of longevity.

{1327}
hide / edit[2] / print
ref: -0 tags: ice charles lieber silicon nanowire probes su-8 microwire extracellular date: 10-14-2016 23:28 gmt revision:2 [1] [0] [head]

PMID-26436341 Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes.

  • Xie C1, Liu J1, Fu TM1, Dai X1, Zhou W1, Lieber CM1,2.
  • Again, use silicon nanowire transistors as sensing elements. These seem rather good; can increase the signal, and do not suffer from shunt resistance / capacitance like wires.
    • They're getting a lot of mileage out of the technology; initial pub back in 2006.
  • Su-8, Cr/Pd/Cr (stress elements) and Cr/Au/Cr (conductor) spontaneously rolled into a ball, then the froze in LN2. Devices seemed robust to freezing in LN2.
  • 300-500nm Su-8 passivation layers, as with the syringe injectable electrodes.
  • 3um trace / 7um insulation (better than us!)
  • Used 100nm Ni release layer; thin / stiff enough Su-8 with rigid Si support chip permitted wirebonding a connector (!!)
    • Might want to use this as well for our electrodes -- of course, then we'd have to use the dicing saw, and free-etch away a Ni (or Al?) polyimide adhesion layer -- or use Su-8 like them. See figure S-4
  • See also {1352}

{1334}
hide / edit[0] / print
ref: -0 tags: micro LEDS Buzaki silicon neural probes optogenetics date: 04-18-2016 18:00 gmt revision:0 [head]

PMID-26627311 Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals.

  • 12 uLEDs and 32 rec sites integrated into one probe.
  • InGaN monolithically integrated LEDs.
    • Si has ~ 5x higher thermal conductivity than sapphire, allowing better heat dissipation.
    • Use quantum-well epitaxial layers, 460nm emission, 5nm Ni / 5nm Au current injection w/ 75% transmittance @ design wavelength.
      • Think the n/p GaN epitaxy is done by an outside company, NOVAGAN.
    • Efficiency near 80% -- small LEDs have fewer defects!
    • SiO2 + ALD Al2O3 passivation.
    • 70um wide, 30um thick shanks.

{1322}
hide / edit[0] / print
ref: -0 tags: polyimide silicon carbide adhesion DBS syle electrodes date: 07-22-2015 18:01 gmt revision:0 [head]

PMID-25571176 Fabrication and characterization of a high-resolution neural probe for stereoelectroencephalography and single neuron recording.

  • Layer stack:
    • 5um PI (UBE U-varnish S)
    • 50nm SiC
      • Deposited at 100C.
    • 300nm Pt
    • 30nm SiC
    • 10nm DLC
    • 5um PI
      • Cured at 450C
    • 100nm Al hard mask (removed)
    • Cytop dry adhesion layer
      • softbake to remove solvent,
      • then hardbake at 290C for 4 hours to anneal the PI and adhere the Cytop to it.

{1276}
hide / edit[2] / print
ref: -0 tags: polyimide silicon oxide aluminum adhesion pressure cooker date: 06-16-2014 21:28 gmt revision:2 [1] [0] [head]

Interfacial adhesion of polymeric coatings for microelectronic encapsulation

  • Find that, after a pressure-cooker test, adhesion of polyimide PI-2610 (what we use) to SiO2 was weaker than to Al, SiN, and copper.
  • Aluminum adhesion is quite good, at least to (only) 15 days @ 85C / 85% RH. Reference studies that find the adhesion to be 'acceptable' for the microelectronics industry.
    • Should we use an aluminum adhesion layer? Less biocompatible metal than Ti, and more likely to degrade in saline.
  • Found that copper adhesion actually went up with water exposure!
  • Polyimide adheres more strongly to glass than epoxy following accelerated aging.

{1274}
hide / edit[0] / print
ref: -0 tags: flexible neural probe polyimide silicon polyethylene glycol dissolvable jove livermore loren frank date: 03-05-2014 19:18 gmt revision:0 [head]

http://www.jove.com/video/50609/insertion-flexible-neural-probes-using-rigid-stiffeners-attached-with

  • details the flip-chip bonding method (clever!)
  • as well as the silicon stiffener fabrication process.

{1241}
hide / edit[4] / print
ref: -0 tags: parylene silicon neural recording probes date: 06-07-2013 00:15 gmt revision:4 [3] [2] [1] [0] [head]

http://thesis.library.caltech.edu/4671/1/PhDThesisFinalChanglinPang.pdf

  • Notes: Michigan probes suffer from thickness limited to <15um, hence are often not stiff enough to penetrate the pia & arachnoid.
  • Likewise, utach arrays are fabricated through a substrate, so cannot be made longer than 1.5-2mm. Plus, they are connected with 25um gold wires, which is both rigid and requires a fair bit of work. (Perhaps with a wirebond machine?)
  • SiO2 suffers from high internal stress (formed at high temperature) and tends to hydrate over time, both making it a less than ideal insulator for biological applications.
    • Silicon is slowly attacked in saline.
  • Use Cr/Au traces, and Ti/Pt electrode sites on his probes.
    • 2.5um minimum trace width.
  • Importantly, they solve the problem of parylene to silicon interconnect by simply fabricating the wires on parylene -- like ours -- and only use silicon as a structural support.
    • Silicon is roughened via XeF2 for good parylene adhesion.
      • Alas, does not survive a long-term soak -- but maybe this is useful? (page 102)
        • This too can be solved via bringing the parylene in vacuum up to melting temperature to better bond with Si.
  • Metal pads on parylene are destroyed by wedge bonding -- heat and pressure are too high!
  • Their solution is to use conductive epoxy & fan the wires out to omnetics pitch (635um) in what they call parylene-PCB-omnetics connector (PPO).
  • Plated a 5um x 5um electrode with platinum black to reduce the impedance from 1.1M to 9.2k (!!)
    • Problem is that Pt black is fragile, and may be scraped off during insertion -- see figure on page 95.
  • Probe shanks are ~ 170um x 150um, tip spade-type patterned via DRIE.
  • To be able to sustain soaking and lifetime testing, thick parylene layers are needed for the flexible parylene cable. The total parylene thickness of our neural probes is about 13 μm which results in a long etching time. We use photoresist as a mask when etching parylene using RIE O2 plasma etching; the etching rate of parylene and photoresist in RIE is roughly 1:1. Thick photoresist (> 20 μm) with high resolution is needed. AZ 9260 thick-film photoresist is designed for the more-demanding higher-resolution thick-resist requirements. It provides high resolution with superior aspect ratios, as well as wide focus and exposure latitude and good sidewall profiles. A process of two spinning coats using AZ 9260 has been developed to make a high-resolution thick photoresist mask of about 30 μm. Figure 4-11 shows the thick photoresist on the probe tip to guarantee a sharp tip after plasma etching. The photoresist is hard baked in oven at 120 oC for 30 min; the thick photoresist needs to be carefully handled during baking to avoid thermal cracking.
  • Otline electrolysis-based actuators ... interesting but hopefully not needed.

{1218}
hide / edit[3] / print
ref: -0 tags: silicon electrode histology Michigan tip shape shear force date: 04-24-2013 20:02 gmt revision:3 [2] [1] [0] [head]

PMID-1601445 Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex.

  • Relatively early assessment of tissue reaction to silicon electrodes.
  • Noted 'severe' reaction at electrode tip; recommend recording along the shaft, Michigan style.
  • Noted microhematoma formation.
  • Recommend fast insertion.
  • Bending of the shafts (e.g. they exert lateral force) causes lateral tissue damage.
    • Problem with fast insertion is that it may cause the needle to bend a bit -- resulting in lateral 'kill zone'.
    • Ultimate speed must be a compromise.
  • Advocate shearing blade tip or chisel point to sever microtubules, rather than a conical tip pushing them to a annular ring that can grab to the sides of the needle.
  • Good paper, reviews the relevant cellular anatomy...

{1231}
hide / edit[1] / print
ref: -0 tags: parylene interconnect monolithic integration silicon DRIE date: 02-26-2013 00:29 gmt revision:1 [0] [head]

A New Multi-Site Probe Array with Monolithically Integrated Parylene Flexible Cable for Neural Prostheses

    • Use DRIE to etch the back of the wafer after patterning the front. Clever!

{1028}
hide / edit[6] / print
ref: Szarowski-2003.09 tags: Michigan array silicon histology MEA cornell date: 01-28-2013 20:47 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-12914963[0] Brain responses to micro-machined silicon devices.

  • Used 2 different implants (rough & sharp corners, smooth), 2 different ways of inserting (slow, by hand).
    • Neither made much diff.
  • Measured GFAP = glial fibrillary acidic protein, a standard measure for assesing reactive gliosis [44,18,28,33,35].
    • Normally larger astrocytes were seen around larger blood vessels.
    • "At four weeks, a clear sheath of GFAP-positive astrocytes was observed"
    • GFAP labeled sheath seems to have plateaued at 6 weeks. (The sheath may be useful for our devices... )
  • Measured Vimentin, which is increased in reactive astrocytes and is not normally expressed in mature astrocytes [6,12,15,40].
    • In control animals vimentin only present in ependymal lining of the ventricles.
    • At 6 weeks, sites around both types of devices had a compact sheath of vimentin-positive astrocytes 50-100um.
    • Seemed to be a plateau as with GFAP .. though it seems to label a slightly distinct set of cells.
  • Also labeled reactive microglia with ED1 [4,19,27,36].
  • Quote: These data indicate that device insertion promotes two responses-an early response that is proportional to device size and a sustained response that is independent of device size, geometry, and surface roughness. The early response may be associated with the amount of damage generated during insertion. The sustained response is more likely due to tissue-device interactions.

____References____

[0] Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W, Brain responses to micro-machined silicon devices.Brain Res 983:1-2, 23-35 (2003 Sep 5)

{1216}
hide / edit[1] / print
ref: Lee-2005.12 tags: micromotion silicon michigan array simulation strain date: 01-28-2013 03:13 gmt revision:1 [0] [head]

PMID-16317231[0] Biomechanical analysis of silicon microelectrode-induced strain in the brain.

  • Simulation.
  • Our analysis demonstrates that when physical coupling between the electrode and the brain increases, the micromotion-induced strain of tissue around the electrode decreases as does the relative slip between the electrode and the brain.
  • Argue that micromotion and shear cause lost recording sensitivity due to inflammation and astroglial scarring around the electrode.
    • This seems to be the scientific consensus ATM.

____References____

[0] Lee H, Bellamkonda RV, Sun W, Levenston ME, Biomechanical analysis of silicon microelectrode-induced strain in the brain.J Neural Eng 2:4, 81-9 (2005 Dec)

{1054}
hide / edit[3] / print
ref: Kawano-2010.03 tags: mEA recording VLS silicon original date: 01-15-2012 22:11 gmt revision:3 [2] [1] [0] [head]

PMID-20089393[0] Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth.

  • The probe arrays can be fabricated on a silicon (1 1 1) substrate by selective VLS growth using catalytic-gold (Au) dots and a disilane (Si2H6) gas source, allowing precise control of probe position, diameter and length, as well as on-chip interconnections/integrated circuits (ICs) ( [Wagner and Ellis, 1964], [Ishida et al., 1999] and [Kawano et al., 2002])
  • maximum length 120 um (or so)

____References____

[0] Kawano T, Harimoto T, Ishihara A, Takei K, Kawashima T, Usui S, Ishida M, Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth.Biosens Bioelectron 25:7, 1809-15 (2010 Mar 15)

{740}
hide / edit[6] / print
ref: BeMent-1986.02 tags: Najafi Michigan probe recording silicon MEA date: 01-15-2012 06:59 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-3957372[0] Solid-state electrodes for multichannel multiplexed intracortical neuronal recording.

  • 1986 (!!) - but same basic technology for manufacture of these devices. Modern Michigan probes are much smaller, though - this paper uses 6um feature sizes. It seems like the rate-limiting step for a lot of this is marketization/selling it & getting the money for further R&D.
  • Mention closed-loop neuroprotheses ... 26 years ago. Why do we not have this yet? This is a really important question!
  • 12 channel on-chip analog processing, G=100, bandwidth 100-6kHz.
  • Mention that they think most of the current has to flow around other cells (glia), which makes it possible to record considerably further from the soma (ref [1],); see also PMID-14490040 which through modeling claims much smaller spread of current.
  • Electrode sites are highly capacitive, phase angle 80 deg.
  • 8 um interconnect leads.
  • Enhancement-mode LOCOS NMOS process.

____References____

[0] BeMent SL, Wise KD, Anderson DJ, Najafi K, Drake KL, Solid-state electrodes for multichannel multiplexed intracortical neuronal recording.IEEE Trans Biomed Eng 33:2, 230-41 (1986 Feb)

{779}
hide / edit[3] / print
ref: Song-2005.06 tags: recording wireless silicon utah probe Donoghue 2005 date: 01-08-2012 23:24 gmt revision:3 [2] [1] [0] [head]

PMID-16003903[0] Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.

-- second from this

  • They have mated a 16-channel silicon microprobe to a low-power (50uW/channel) VLSI chip, including a CMOS amplifier.
    • Epoxy ball-bond.
    • 7mW total power.
  • Suggest photovoltaic power using GaAs/AlGaAs photodiodes. 3 in series yielding 3V at about 20% efficiency. Not bad! Then they can use the fiber to get data out, too.

____References____

[0] Song YK, Patterson WR, Bull CW, Beals J, Hwang N, Deangelis AP, Lay C, McKay JL, Nurmikko AV, Fellows MR, Simeral JD, Donoghue JP, Connors BW, Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.IEEE Trans Neural Syst Rehabil Eng 13:2, 220-6 (2005 Jun)

{997}
hide / edit[10] / print
ref: Najafi-1985.07 tags: Najafi original silicon michigan recording array 1985 MEA date: 01-06-2012 05:27 gmt revision:10 [9] [8] [7] [6] [5] [4] [head]

IEEE-1484848 (pdf) A high-yield IC-compatible multielectrode recording array.

  • Already talks about closed-loop control of a neuroprosthesis.
  • Started testing on-chip NMOS amplifiers.
  • tantalum and polysilicon conductors. some resistivity, but much less than the electrode interface.

____References____

Najafi, K. and Wise, K.D. and Mochizuki, T. A high-yield IC-compatible multichannel recording array Electron Devices, IEEE Transactions on 32 7 1206 - 1211 (1985)

{996}
hide / edit[8] / print
ref: Najafi-1986.12 tags: Najafi implantable wired recording Michigan array multiplexing silicon boron MEA date: 01-05-2012 03:07 gmt revision:8 [7] [6] [5] [4] [3] [2] [head]

IEEE-1052646 (pdf) An implantable multielectrode array with on-chip signal processing

  • "The major reason for the slow progress in the understanding of neural circuits has been the lack of adequate instrumentation."
  • previous photolithographic: [4],[5]. Their first publication: [7].
  • Kensall Wise, not Stephen.
  • Single shank
  • 10 recording sites spaced at 100um
  • Amplifying 100x, b/w 15kHz., multiplexing.
  • width: 15um near tip, 160um at base.
  • 3 leads (!) power, ground, data.
  • 6um LOCOS enhancement and depletion NMOS technology -- not CMOS. (latter is prone to latch-up)
  • 5mW power.
  • boron dope silicon, etch back non doped portion with ethylenediamine-pyrocatechol (EDP) water solution.
  • must not have any substrate bias!

____References____

Najafi, K. and Wise, K.D. An implantable multielectrode array with on-chip signal processing Solid-State Circuits, IEEE Journal of 21 6 1035 - 1044 (1986)

{739}
hide / edit[5] / print
ref: Najafi-1990.05 tags: Najafi Michigan probe silicon strength electrodes recording MEA date: 01-03-2012 22:45 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-2345003[0] Strength characterization of silicon microprobes in neurophysiological tissues.

  • These active (with amplification/buffering circuitry) electrodes were around since 1990! It's been a while, and at least the devices are commercially available now.
  • Show that thin-film silicon is remarkably flexible and tough - about six times as strong as bulk silicon.
  • Have developed a silicon probe with an integrated phosphorous-doped polysilicon strain guague - nice.

____References____

[0] Najafi K, Hetke JF, Strength characterization of silicon microprobes in neurophysiological tissues.IEEE Trans Biomed Eng 37:5, 474-81 (1990 May)

{1012}
hide / edit[3] / print
ref: Wise-1970.07 tags: Wise MEA silicon gold lithography date: 01-03-2012 19:05 gmt revision:3 [2] [1] [0] [head]

IEEE-4502738 (pdf) An Integrated-Circuit Approach to Extracellular Microelectrodes

  • Used lithography techniques & to make SiO2 & Au electrodes.
  • 2um tips.
    • Back then, small tips were deemed good; nowadays, we want larger, lower-impedance tips (fad?)
  • Most previous work is glass insulated metal electrodes [1][2]
    • C. Guld, a glass-covered platinum microelectrode. {1014}
  • Probes cannot exceed more than 50um from the edge of the chip carrier without cracking, which limits how close one may get to a given cell.

____References____

Wise, Kensall D. and Angell, James B. and Starr, Arnold An Integrated-Circuit Approach to Extracellular Microelectrodes Biomedical Engineering, IEEE Transactions on BME-17 3 238 -247 (1970)

{841}
hide / edit[4] / print
ref: Tian-2010.08 tags: nanowire nanoprobe silicon FET doping cis trans extracellular intracellular recording neuro MEA date: 01-03-2012 16:35 gmt revision:4 [3] [2] [1] [0] [head]

PMID-20705858[0] Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes

  • Made a silicon nanowire with 60 deg. kinks via trans/cis manipulation.
  • Doped one part of the N nanowire P to make a 200nm long FET whose gate is simply the surface of the nanowire (I think, have to check the refs)
  • Attached the nanoprobe / nanowire to flexible PMMA / SM-8 support which, due to interfacial stress, rose off the substrate (clever!)
  • Coated tip with phospholipid layers -> better cell attachment / penetration.
    • Possible to have the cell pull the nanoprobe in via endocytic pathways.
  • Were able to record intracellular and extracellular AP from rabbit cardiocytes. (!!!)

____References____

[0] Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes.Science 329:5993, 830-4 (2010 Aug 13)

{149}
hide / edit[12] / print
ref: WISE-2004.01 tags: wireless electrodes silicon Michigan Kipke Najafi recording MEA date: 01-03-2012 03:23 gmt revision:12 [11] [10] [9] [8] [7] [6] [head]

IEEE-01258173 (pdf) Wireless implantable microsystems: high-density electronic interfaces to the nervous system - January 2004.

  • very impressive!
  • based on the old / well established beam-lead technology (see the image of the paper at the bottom of that page).
    • required 20 years of development to create an etching process with sufficient yield, though. Microprobes have been in development since 1966.
    • Silicon is slowly attacked by saline; however, the use of a boron etch-stop to define the substrate virtually eliminates such erosion.
    • Silicon dioxide is known to slowly hydrate in water, but this can be mitigated by CVD of silicon nitride / silicon oxide stacks. Polysilicon can be used too, since it forms a tight bond with silicon oxide, keeping water out.
      • Why don't they just seal it with a known impermeable plastic/epoxy/whatever? (They do, later) Utah probe is sealed in parylene.
    • Shunt capacitance is negligible compared to site capacitance; heavy substrate doping minimizes electrical or optically induced noise & virtually eliminates crosstalk.
    • (Of course) Silicon allows amplifiers and circuitry to be formed at/near the electrode, eliminating the need for (some) interconnects.
    • Silicon ribbon connectors cannot be made much longer than a few centimeters. 4um thick silicon cables are 100x more flexible than a 25um gold wire (!!) - but that is out-of-plane; they are relatively weak for in-plane stress.
  • Gold has a maximum charge delivery of 20uC/cm^2 ; platinum, 75 uC/cm^2 ; iridium oxide, 3000 uC/cm^2.
  • Glass can be hermetically bonded to silicon if both flat clean surfaces are put in opposition with a high voltage (1500V) placed across the interface at an elevated temperature (400C). These packages have been shown to be stable and inert in guinea pigs.
    • Silicon nitride, thin metal films, and metal films over polymers are all attractive coatings for probes (with no mention of biocompatibility); they last decades in salt water, and eventually succumb to pinholes.
  • Silicon probes outperform microwire arrays by a factor of (up to) 50 in terms of volume of tissue displaced / recording site. Michigan probes are typically 15um thick x 60um in cross section.
  • they tend to use many more recording sites than recording channels, hence, have a low expected yield. e.g. they have a 1024 site electrode (see the cool figures!), and can record from the best 128 of those. good idea, reasonable strategy, I guess.
    • they demonstrate that it is not too hard to remove the artifact of multiplexing on their systems - the multiplexing noise is below electrode noise.
  • talk about spongifying their iridium electrodes using current pulses in a PBS solution to (apparently) lower electrode impedance.
  • talk about drug delivery too
  • describe the exact manufacturing procedures that the Michigan arrays are created, including the critical back-etch (which i don't exactly understand).
  • describe the circuits used to amplify low-level neural signals.
  • Their charge-redistribution ADC is okay - 250ksps, 9b resolution, 1.4mW from a 3v source. Commercial ADCS are better - AD7467 is 0.6mw, 200ksps, 10bits. (though it scales up to 1.3mW @ 3V, 200ksps ; 0.36mW @1.8V - so the devices are comparable.)
  • some of the (very tiny) electrodes have 'holes' (!)
  • also have wireless microstimulators.
  • demonstrate long-term recording: 383days post implant in a rat & there are still many cells (though the figure is not that great, it is easy to understand) (this might be an exemplar)
  • associated website?
  • (quote:) "For ranges of a few centimeters, the high attenuation of RF signals in biological tissue dictates carrier frequencies below 10Mhz." Their solution is to use FSK with octave jumps in freqency & modulation rates up to 60% that of the carrier frequency.

____References____

WISE, K.D. and ANDERSON, D.J. and HETKE, J.F. and KIPKE, D.R. and NAJAFI, K. Wireless implantable microsystems: high-density electronic interfaces to the nervous system Proceedings of the IEEE 92 1 76 - 97 (2004)

{312}
hide / edit[4] / print
ref: Csicsvari-2003.08 tags: recording michigan silicon electrodes Buzsaki MEA date: 01-03-2012 03:23 gmt revision:4 [3] [2] [1] [0] [head]

PMID-12904510[0] Csicsvari 2003 Massively parallel recording of unit and local field potentials with silicon-based electrodes

  • What's so massive? 64 or 96 channel Michigan probes.
  • Motivation: recording local connections and interactions requires precise knoledge of the location of your recording sites.
  • Some classic refs on cortical building blocks.
  • Optical recording: Mao et al 2001 PMID-11738033.
  • Wired recording:, Chicurel 2001; Deadwyler and Hampson 1995 PMID-7481817; Evarts 1968; {994}
  • Tetrodes: Drake 1988, Gray 1995, McNaughton et al 1983; Recce and O'Keefe 1989.
  • on-chip active circuitry (simple voltage feedback op-amp - without reference electrodes!) reduces microphone artifact. 6mm 'antenna'.
    • refs: Bai and Wise 2001 {995}; Olsson et al. 2002
    • also Najafi and Wise 1986 {996}; Wise and Najafi 1991 .
  • Stored wideband data; sorted via KlustaKwik.
  • Total recording area 1.6mm deep by 1.8mm wide. Shanks separated by 300um ; recordings sites separated by 100um; shanks 12um thick.
    • Made via double-sided deep reactive reactive ion etching (DRIE).
  • stimulated the entorhinal cortex & recorded in the hippocampus; used the precise spatial layout of the micromachined silicon electrodes to map out the evoked potentials.
  • figure 3 shows that they can record the 'same' neuron from multiple 100um-spaced sites on a given shank. Some of this is due to the physically large extent of the hippocampal cells which they recorded; spike propagate both down the axon and back into the soma, and by using Current Source Density maps, they could estimate some of spatio-temporal characterisics of the AP.
    • CSD is the second spatial derivtive of the local field potentials.
    • Could measure forward and back-propagation of APs to the dendrites (!)
  • quote: in contrast to wire tetrodes with blunt cute ends, it was possible to record from the same cell layer numerous times after moving the probe up and subsequently back to the previous recording location.
    • size of the electrode shanks: 62um wide x 12um thick at top of recording site of 12 site shank; 82um wide at top of 16 site shank.
    • Top 4 recording sites' recording quality deteriorated with multiple penetrations.
  • good place-cell map; cells were discriminated based on a PCA across both time and electrode.

____References____

{743}
hide / edit[2] / print
ref: Perelman-2007.01 tags: Technion recording silicon date: 01-03-2012 01:07 gmt revision:2 [1] [0] [head]

PMID-17260864[0] An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.

  • Use an RC filter (5MOhm resistor (polysilicon) + 160pf cap (gate oxide)) to split spike and LFP signals.
  • Weak-inversion MOS transistor to vary the high-pass pole. This can be varied over several orders of magnitude with a DAC (and can be varied to compensate for process variation).
  • Have some good debugging notes on their chip - how the weak inversion MOS transistors leaked more current than expected.

____References____

[0] Perelman Y, Ginosar R, An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.IEEE Trans Biomed Eng 54:1, 130-7 (2007 Jan)

{741}
hide / edit[5] / print
ref: Sodagar-2006.31 tags: Najafi michigan probe silicon recording 2006 date: 01-03-2012 00:56 gmt revision:5 [4] [3] [2] [1] [0] [head]

IEEE-4463150 (pdf) A neural signal processor for an implantable multi-channel cortical recording microsystem

  • Full 64 ch NPU (neural processing unit). The 'competition'.
    • Scan mode: all 64 channels are searched for the occurence of neural spikes. Addresses with neural activity are sorted, packed, and sent to the outside world.
      • Each channel can be individually set to +, -, or +- spikes. (no templates).
    • monitor mode: 2 channels of broadband transmission.
  • ref [3] claims 100 channels integrated.
  • inductive bidirectional wireless link.
  • Hierarchical design: 64 channels = 2 32 channel master/slave NPUs, each 4 8-channel modules.
  • External 8-bit A/D converter.
  • One 32-ch NPU in 0.5um AMI N-well CMOS process, 3.5mm x 2.7mm.
  • channel scan rate 64ksample/sec; 64 kspikes/sec, typical 8:1 data compression.
  • 2mbps output rate.
  • see also {393} and {149} - they report the same results, perhaps in more detail.

____References____

Sodagar, A.M. and Wise, K.D. and Najafi, K. Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE 5900 -5903 (2006)