use https for features.
text: sort by
tags: modified
type: chronology
hide / / print
ref: -2019 tags: Vale photostability bioarxiv DNA oragami photobleaching date: 03-10-2020 21:59 gmt revision:5 [4] [3] [2] [1] [0] [head]

A 6-nm ultra-photostable DNA Fluorocube for fluorescence imaging

  • Cy3n = sulfonated version of Cy3.
  • JF549 = azetidine modified version of tetramethyl rhodamine.

Also including some correspondence with the authors:


Nice work and nice paper, thanks for sharing .. and not at all what I had expected from Ron's comments! Below are some comments ... would love your opinion.

I'd expect that the molar absorption coefficients for the fluorocubes should be ~6x larger than for the free dyes and the single dye cubes (measured?), yet the photon yields for all except Cy3N maybe are around the yield for one dye molecule. So the quantum yield must be decreased by ~6x?

This in turn might be from a middling FRET which reduces lifetime, thereby the probability of ISC, photoelectron transfer, and hence photobleaching.

I wonder if in the case of ATTO 647N Cy5 and Cy3, the DNA is partly shielding the fluorphores from solvent (ala ethidium bromide), which also helps with stability, just like in fluorescent proteins. ATTO 647N generates a lot of singlet oxygen, who knows what it's doing to DNA.

Can you do a log-log autocorrelation of the blinking timeseries of the constructs? This may reveal different rate constants controlling dark/light states (though, for 6 coupled objects, might not be interpretable!)

Also, given the effect of DNA shielding, have you compared to free dyes to single-dye cubes other than supp fig 10? The fact that sulfonation made such a huge effect in brightness is suggestive.

Again, these are super interesting & exciting results!


I haven't directly looked at the molar absorption coefficient but judging from the data that I collected for the absorption spectra, there is certainly an increase for the fluorocubes compared to single dyes. I agree that this would be an interesting experiment and I am planning collect data to measure the molar absorption coefficient. I would also expect a ~6 fold increase for the Fluorocubes.

Yes, we suspect homo FRET to help reduce photobleaching. So far we only measured lifetimes in bulk but are planning to obtain lifetime data on the single-molecule level soon.

We also wondered if the DNA is providing some kind of shield for the fluorophores but could not design an experiment to directly test this hypothesis. If you have a suggestion, that would be wonderful.

The log-log autocorrelation of blinking events is indeed difficult to interpret. Already individual intensity traces of fluorocubes are difficult to analyze as many of them get brighter before they bleach. We are also wondering if some fluorocubes are emitting two photons simultaneously. We will hopefully be able to measure this soon.