m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
{1356}
hide / edit[6] / print
ref: -2016 tags: Kozai carbon fiber microelectrodes JNE PEDOT PSS pTS date: 04-27-2017 01:42 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-27705958 Chronic in vivo stability assessment of carbon fiber microelectrode arrays.

  • showed excellent recording characteristics and nearly zero glial scarring.
  • 6.4um carbon fiber + 800nm parylene-C = 8.4um.
    • Cytec Thoronel T-650 CF, Youngs modulus = 255 GPa, tensile strength = 4.28 GPa, PAN-based.
  • Everything protected with our wonderful phenol epoxy 353NDT, heat-cure.
  • Used two coating solutions:
    • Solution of 0.01 M 3,4-ethylenedioxythiophene (483028, Sigma-Aldrich, St. Louis, MO): 0.1 M sodium p-toluenesulfonate (152536, Sigma-Aldrich, St. Louis, MO).
      • pTS is not that dissimilar from it's alkyl cousin, SPS, {1353}. Likely a soapy chemical due to the opposed methyl and sulfonic acid group; benzine will take up less room in the polymer c.f. SDS & may lower the oxidation potential of EDOT.
      • Tosylates have been explored as a EDOT counterion : PMID-22383043 Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection. and PEDOT-TMA
    • Solution was composed of 0.01 M 3,4-ethylene-dioxythiophene (483028, Sigma-Aldrich, St. Louis, MO):0.1 M polystyrene sulfonate (m.w. 70.000, 222271000, Acros, NJ).
    • For each solution the electrodeposition was carried out by applying 100 pA/channel for 600 s to form a layer of poly(3,4-ethylenedioxythiophene):sodium p-toluenesulfonate (PEDOT:pTS) or poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS).
      • Weird, would use voltage control here..
  • According to works by Green et al [45] and Hukins et al [46], equation (1) can be used to determine the aging time that
the fibers have undergone: t 37=t TQ10 T37)/10 where t 37 is the simulated aging time at 37 °C, t T is the amount of real time that the samples have been kept at the elevated temperature, T , and Q10 is an aging factor that is equal to 2, according to ASTM guidelines for polymer aging [47].
  • Show > 2MOhm impedance of the small-area electrodes. At the aging endpoint, PEDOT:pTS had about half the impedance of PEDOT:PSS.
    • 4M PSS, 7M pTS, both plated down to ~ 130k initial, went up to 2M pSS, 840k pTS.
  • Recording capability quite stellar
  • Likewise for the glial response.

{1237}
hide / edit[0] / print
ref: -0 tags: winslow Tresco 2010 BBB histology immune response microelectrodes date: 04-19-2013 23:25 gmt revision:0 [head]

PMID-19963267 Quantitative analysis of the tissue response to chronically implanted microwire electrodes in rat cortex.

  • Winslow BD, Tresco PA.
  • The spatial distribution of biomarkers associated with the foreign body response to insulated microwires placed in rat cerebral cortex was analyzed 2, 4, and 12 weeks after implantation using quantitative methods.
  • We found no evidence that reactive gliosis increases over time or that neuronal loss is progressive, we did find evidence of persistent inflammation and enhanced BBB permeability at the electrode brain tissue interface that extended over the 3 month indwelling period and that exhibited more animal to animal variability at 3 months than at 2 and 4 weeks.

{999}
hide / edit[6] / print
ref: -0 tags: microelectrodes original metal pipette glass recording MEA date: 01-31-2013 19:46 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

IEEE-4065599 (pdf) Comments on Microelectrodes

  • The amplifiers themselves, even back in 1950's, posed no problems -- low bandwidth. All that is required is low noise and high input impedance.
  • KCl Glass electrodes are LPF (10M resistive + 10pf parasitic capacitance); metal HPF (capacitive).
    • The fluid tip will not see external triphasic spikes of vertebrate axons above the noise level.
  • Metal probe the most useful.
  • Pt electrode in CSF behaves like a capacitor at low voltage across a broad frequency range. CSF has compounds that retard oxidation; impedance is more resistive with physiological saline.
  • Noise voltage generated by a metal electrode best specified by equivalent noise resistance at room temperature, E rmsnoise=4kTR nδF R_n should equal the real part of the electrode impedance at the same frequency.
  • Much of electrochemistry: solid AgCl diffuses away from an electrode tip with great speed and can hardly be continuously formed with an imposed current. Silver forms extremely stable complexes with organic molecules having attached amino and sulfhydril groups which occur in plenty where the electrode damages the tissue. Finally, the reduction-oxidation potential of axoplasm is low enough to reduce methylene blue, which places it below hydrogen. AgCl and HgCl are reduced.
  • The external current of nerve fibers is the second derivative of the traveling spike, the familiar triphasic (??) transient.
  • Svaetichin [1] and Dowben and Rose [3] plated with Platinum black. This increases the surface area.
    • Very quickly it burns onto itself a shell of very adherent stuff. It is kept from intimate contact with the tissue around it by a shell.
    • We found that if we add gelatin to the chloroplatinic acid bath from which we plate the Pt, the ball is not only made adherent to the tip but is, in a sense, prepoisoned and does not burn a shell into itself.
  • glass insulation using woods metal (which melts at a very low temperature). Platinum ball was plated onto 2-3um pipette tip. 3um gelatinized platinum black ball, impedance 100kOhm at 1kHz.
    • Highly capacitive probe: can be biased to 1 volt by a polarizing current of 1e-10 amp. (0.1nA).
  • Getting KCl solution into 1um pipettes is quite hard! They advise vacuum boiling to remove the air bubbles.
  • Humble authors, informative paper.

____References____

' ''' ()

{1010}
hide / edit[6] / print
ref: Salcman-1973.07 tags: Salcman MEA microelectrodes chronic recording glass cyanocrylate date: 01-28-2013 02:37 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

IEEE-4120641 (pdf) Design, Fabrication, and In Vivo Behavior of Chronic Recording Intracortical Microelectrodes

  • Teflon-coated 25um Pt-Ir (90/10)
  • Heat fuse this with a glass micropipette & backfill with cyanoacrylate. {1011}
    • Isobutyl acrylate is hydrolysed more slowly and hence is less toxic to the surronding tissue
    • cyanoacrylate is apparently biodegradable.
  • Durable, stable: one electrode displayed a single cortical spike (though not necessarily the same one) for more than 90 consecutive days.
  • unacceptably low impedance = 100K or less
  • Unit activity was present only 10-24H after surgery.
  • formal review of even older microelectrode studies.
  • 10nA should be 100x too small to have any effect on a platinum tip [17]
  • A seperable cell with a SNR of 3:1 would become lost if the electrode tip moved 15um away from a 20um soma.
    • "It becomes clear that the problem of holding single units for prolonged periods in the unrestrained animal is not achieved without considerable difficulty". Yet they think they have solved it.

____References____

Salcman, Michael and Bak, Martin J. Design, Fabrication, and In Vivo Behavior of Chronic Recording Intracortical Microelectrodes Biomedical Engineering, IEEE Transactions on BME-20 4 253 -260 (1973)

{897}
hide / edit[5] / print
ref: Harris-2011.08 tags: microelectrodes nanocomposite immune response glia recording MEA date: 01-27-2013 22:19 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-21654037[0] In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes

  • J P Harris, A E Hess, S J Rowan, C Weder, C A Zorman, D J Tyler and J R Capadona Case Western University.
  • Simple idea: electrodes should be rigid enough to penetrate the brain, yet soft enough to not damage it once implanted.
  • Many studies have shown that shear stress around a microelectrode shaft causes neural die-off and glial response.
  • You can only record from neurons if they are < 100um from the electrode tip.
  • Nanocomposite material is inspired by sea cucumber skin.
    • Our materials exhibit this behaviour by mimicking the architecture and proposed switching mechanism at play in the sea cucumber dermis by utilizing a polymer NC consisting of a controllable structural scaffold of rigid cellulose nanofibres embedded within a soft polymeric matrix. When the nanofibres percolate, they interact with each other through hydrogen bonding and form a nanofibre network that becomes the load-bearing element, leading to a high overall stiffness of the NC. When combined with a polymer system which additionally undergoes a phase transition at physiologically relevant temperatures, a contrast of over two orders of magnitude for the tensile elastic modulus is exhibited.
  • Probes were 200um wide, 100um thick, and had a point sharpened to 45deg.
  • Buckle force testing was done on 53um thick, 125um wide probes sharpened to a 30deg point.
  • Penetration stress through the rat pia is 1.2e7 dynes/cm^2 for a Si probe 40um thick and 80um wide.
  • See also {1198}

____References____

[0] Harris JP, Hess AE, Rowan SJ, Weder C, Zorman CA, Tyler DJ, Capadona JR, In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes.J Neural Eng 8:4, 046010 (2011 Aug)

{1011}
hide / edit[4] / print
ref: Goldstein-1973.07 tags: Salcman microelectrodes bucking analysis stiffness youngs modulus mechanical MEA date: 01-04-2012 01:22 gmt revision:4 [3] [2] [1] [0] [head]

IEEE-4120642 (pdf) Mechanical Factors in the Design of Chronic Recording Intracortical Microelectrodes

____References____

Goldstein, Seth R. and Salcman, Michael Mechanical Factors in the Design of Chronic Recording Intracortical Microelectrodes Biomedical Engineering, IEEE Transactions on BME-20 4 260 -269 (1973)