m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
{1307}
hide / edit[0] / print
ref: -2000 tags: polyimide acrylic aluminum electro deposition imide insulation ultra thin date: 02-27-2015 19:42 gmt revision:0 [head]

Ultrathin, Layered Polyamide and Polyimide Coatings on Aluminum

  • Alternating polyelectrolyte deposition of layered poly(acrylic acid)/poly(allylamine hydrochloride) (PAA/PAH) films on Al produces ultrathin coatings that protect Al from Cl--induced corrosion.
  • Resistance goes from 5 MOhm/cm^2 at 10nm thickness to ~50MOhm/cm^2 following imidization of the monolayer-applied polymer films.

{1279}
hide / edit[0] / print
ref: -0 tags: parylene plasma ALD insulation long-term saline PBS testing date: 04-02-2014 21:32 gmt revision:0 [head]

PMID-23024377 Plasma-assisted atomic layer deposition of Al(2)O(3) and parylene C bi-layer encapsulation for chronic implantable electronics.

  • This report presents an encapsulation scheme that combines Al(2)O(3) by atomic layer deposition with parylene C.
  • Al2O3 layer deposited using PAALD process-500 cycles of TMA + O2 gas.
  • Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 °C
    • That's it?
  • The consistency of leakage current suggests that no obvious corrosion was occurring to the Al2O3 film. The extremely low leakage current (≤20 pA) was excellent for IDEs after roughly three years of equivalent soaking time at 37 °C.
    • Still, they warn that it may not work as well for in-vivo devices, which are subject to tethering forces and micromotion.

{1193}
hide / edit[12] / print
ref: Prasad-2012.1 tags: tungsten microwire electrodes histology insulation failure sanchez microwire tungsten date: 06-27-2013 22:40 gmt revision:12 [11] [10] [9] [8] [7] [6] [head]

PMID-23010756[0] Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.

  • c.f. [1]
  • microwire implant, durations that ranged from acute to up to 9 months in 25 rats.
  • First 2-3 weeks electrode impedance + recording quality fluctuated the most widely.
  • Electrode recording site deterioration continued for the long-term animals as insulation damage occurred and recording surface became more recessed over time.
  • Activated microglia were found near electrode tracts in all chronic animals.
    • High ferritin expression, intraparenchymal bleeding, microglial degeneration suggesting presence of excessive oxidative stress via Fenton chemistry.
      • Wikipedia: Free iron is toxic to cells as it acts as a catalyst in the formation of free radicals from reactive oxygen species via the Fenton Reaction.[11] Hence vertebrates use an elaborate set of protective mechanisms to bind iron in various tissue compartments.
  • Ferritin expression sometimes associated with blebbing / cytorrhexis. (in figures 7-8)
    • Interestingly, during the first few hours after implantation many microglial cells are undergoing cytoplasmic fragmentation (cytorrhexis) which indicates ongoing degeneration of these cells as their cytoplasm literally breaks apart. Cytorrhexis has been previously observed in the aged human brain where it becomes particular prominent in subjects with Alzheimer’s disease.
  • Could not discriminate abiotic (insulation, recording site size) and biotic (inflammatory response) causes of failure.
    • Microglial response not correlated with prolonged performance.
  • Tungsten TDT microwire arrays. 50um diameter, 10um polyimide insulation.
  • SEM imaging pre and prior implantation.
  • Antibodies marking microglia:
    • Iba1 marks all microglia.
    • ED1 stain against CD68 to identify active macrophages [80], but not necessarily all activated microglia since many activated cells are not engaged in phagocytosis and thus are ED1-negative.
    • Anti-ferritin staining to identify those microglia involved in the sequestration of free iron that may leak as a result of BBB compromize.
      • Issue: ferritin is expressed in all tissues ..
    • OX-6 to identify antigen-presenting MHC-II (immune) cells, e.g. microglia or blood-borne immune cells.
  • Found the immunohistoheamistry not terribly convincing.
    • Above, arrows show withdrawn electrode tips.
  • Working with the FDA to promote good laboratory practice (GLP) and good manufacturing practice (GMP). Can mention the same.
  • No evidence of infection in rats.
    • Not true in monkeys..

____References____

[0] Prasad A, Xue QS, Sankar V, Nishida T, Shaw G, Streit WJ, Sanchez JC, Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.J Neural Eng 9:5, 056015 (2012 Oct)
[1] Freire MA, Morya E, Faber J, Santos JR, Guimaraes JS, Lemos NA, Sameshima K, Pereira A, Ribeiro S, Nicolelis MA, Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants.PLoS One 6:11, e27554 (2011)

{748}
hide / edit[4] / print
ref: Leung-2008.08 tags: biocompatibility alginate tissue response immunochemistry microglia insulation spin coating Tresco recording histology MEA date: 01-28-2013 21:19 gmt revision:4 [3] [2] [1] [0] [head]

PMID-18485471[0] Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry

  • The important result is that materials with low protein-binding (e.g. alginate) have fewer bound microglia, hence better biocompatibility. It also seems to help if the material is highly hydrophilic.
    • Yes alginate is made from algae.
  • Used Michigan probes for implantation.
  • ED1 = pan-macrophage marker.
    • (quote:) Quantification of cells on the surface indicated that the number of adherent microglia appeared higher on the smooth side of the electrode compared to the grooved, recording site side (Fig. 2B), and declined with time. However, at no point were electrodes completely free of attached and activated microglial cells nor did these cells disappear from the interfacial zone along the electrode tract.
    • but these were not coated with anything new .. ???

____References____

[0] Leung BK, Biran R, Underwood CJ, Tresco PA, Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry.Biomaterials 29:23, 3289-97 (2008 Aug)

{1105}
hide / edit[1] / print
ref: Bullara-1983.09 tags: electrode grinding insulation stimulation date: 01-28-2013 00:27 gmt revision:1 [0] [head]

PMID-6632958[0] A microelectrode for delivery of defined charge densities.

  • Details the diamond impregnated lead grinding and epoxy insulation of 75um Pt-Ir wires;
  • Encapsulate the whole thing in Dacron mesh;
  • Electrodes are good for stimulating up to 300 uC / cm^2 * phase;
  • Charge balanced pulses 5-20ua in amplitude, 200us/phase, 20Hz repetition are sufficient to activate nearby cortical neurons.

____References____

[0] Bullara LA, McCreery DB, Yuen TG, Agnew WF, A microelectrode for delivery of defined charge densities.J Neurosci Methods 9:1, 15-21 (1983 Sep)