m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
{1360}
hide / edit[1] / print
ref: -0 tags: L1 cell adhesion neural implants microglia DRG spinal cord dorsal root inflammation date: 11-19-2016 22:55 gmt revision:1 [0] [head]

PMID-22750248 In vivo effects of L1 coating on inflammation and neuronal health at the electrode-tissue interface in rat spinal cord and dorsal root ganglion.

  • Kolarcik CL1, Bourbeau D, Azemi E, Rost E, Zhang L, Lagenaur CF, Weber DJ, Cui XT.
  • Quote: With L1, neurofilament staining was significantly increased while neuronal cell death decreased.
  • These results indicate that L1-modified electrodes may result in an improved chronic neural interface and will be evaluated in recording and stimulation studies.
  • Ok, so this CAM seems to mitigate against microglia / inflammation, but how was it selected vs any of the other CAMs and surface proteins? (This domain is almost completely unknown by me..)
  • Ultimate strategy likely to be a broad combination of mechanical (size, flexibility), biochemical (inflammation, cell migration), electrochamical (surface coatings) and vasculature-avoiding approaches.

{1326}
hide / edit[1] / print
ref: -0 tags: reactive oxygen accelerated aging neural implants date: 10-07-2015 18:45 gmt revision:1 [0] [head]

PMID-25627426 Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species.

  • Takmakov P1, Ruda K, Scott Phillips K, Isayeva IS, Krauthamer V, Welle CG.
  • TDT W / PI implants completely failed (W etched and PI completely flaked off) after 1 week in 87C H2O2 / PBS solution. Not surprising.
    • In the Au plated W, the Au remained, the PI flaked off, while thin fragile gold tubes were left. Interesting.
  • Pt/Ii + Parylene-C microprobes seemed to fare better; one was unaffected, others experienced a drop in impedance.
  • NeuralNexus (Si3N4 insulated, probably, plus Ir recording pads) showed no change in H2O2 RAA, strong impedance drop (thicker oxide layer?)
  • Same for blackrock / utah probe (Parylene-C), though there the parylene peeled from the Si substrate a bit.

{1306}
hide / edit[2] / print
ref: -2008 tags: tantalum chromium polyimide tungsten flexible neural implants adhesion layer date: 06-24-2015 22:53 gmt revision:2 [1] [0] [head]

PMID-18640155 Characterization of flexible ECoG electrode arrays for chronic recording in awake rats.

  • Yeager JD1, Phillips DJ, Rector DM, Bahr DF.
  • We tested several different adhesion techniques including the following: gold alone without an adhesion layer, titanium-tungsten, tantalum and chromium.
  • All films were DC magnetron sputtered, without breaking vacuum between the adhesion layer (5nm) and gold counductor layer (300nm).
  • We found titanium-tungsten to be a suitable adhesion layer considering the biocompatibility requirements as well as stability and delamination resistance.
  • While chromium and tantalum produced stronger gold adhesion, concerns over biocompatibility of these materials require further testing.
    • Thought: use tantalum directly, no Ti needed.
    • Much better than Cr -- much more ductile and biocompatible.
    • Caveat: studies showing reduction to stociometric Ta results in delamination.
  • Ta conductivity: 1.35e-7 Ohms * m; Ti 4.2e-7; 3x better (film can be 3x thinner..)

{1198}
hide / edit[5] / print
ref: Harris-2011.12 tags: mechanically adaptive electrodes implants case western dissolving flexible histology Harris date: 01-25-2013 01:39 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-22049097[0] Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies.

  • See also [1]
  • Initial tensile modulus of 5GPa dropped to 12MPa. (almost 500-fold!)
    • Their polymer nanocomposite (NC) still swells 65-70% (with water?)
    • Implant size 100 x 200um.
  • Controlled with tungsten of identical size and coating.
  • Tethered to skull.
  • Interesting:
    • The neuronal nuclei density within 100 ┬Ám of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire.
    • At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite.
    • Hypothesis, in discussion: softer implants are affecting the time-course of the response rather that final results
  • The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire
  • Cultured astrocytes have been shown to respond to mechanical stimuli via calcium signaling (Ostrow and Sachs, 2005).
  • Substrate stiffness is also known to shift cell differentiation in mesenchymal stem cells to be neurogenic, myogenic, or osteogenic (Engler et al., 2006).
  • In vivo studies which focus on the effects of electrode tethering have shown that untethered implants reduce the extent of the glial scar (Biran et al., 2007; Kim et al., 2004; Subbaroyan, 2007)
  • Parylene, polymide, and PDMS still each have moduli 6 orders of mangitude larger than that of the brain.
  • In some of their plots, immune response is higher around the nanocomposites!
    • Could be that their implant is still too large / stiff?
  • Note that recent research shows that vitemin may have neuroprotective effects --
    • Research has linked vimentin expression to rapid neurite extension in response to damage (Levin et al., 2009)
    • NG2+ cells that express vimentin have been proposed to support repair of central nervous system (CNS) damage, and stabilize axons in response to dieback from ED1+ cells (Alonso, 2005; Nishiyama, 2007; Busch et al., 2010)
  • Prior work (Frampton et al., 2010 PMID-20336824[2]) hypothesizes that a more compact GFAP response increases the impedance of an electrode which may decrease the quality of electrode recordings.

____References____

[0] Harris JP, Capadona JR, Miller RH, Healy BC, Shanmuganathan K, Rowan SJ, Weder C, Tyler DJ, Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies.J Neural Eng 8:6, 066011 (2011 Dec)
[1] Harris JP, Hess AE, Rowan SJ, Weder C, Zorman CA, Tyler DJ, Capadona JR, In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes.J Neural Eng 8:4, 046010 (2011 Aug)
[2] Frampton JP, Hynd MR, Shuler ML, Shain W, Effects of glial cells on electrode impedance recorded from neuralprosthetic devices in vitro.Ann Biomed Eng 38:3, 1031-47 (2010 Mar)