m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
{1356}
hide / edit[6] / print
ref: -2016 tags: Kozai carbon fiber microelectrodes JNE PEDOT PSS pTS date: 04-27-2017 01:42 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-27705958 Chronic in vivo stability assessment of carbon fiber microelectrode arrays.

  • showed excellent recording characteristics and nearly zero glial scarring.
  • 6.4um carbon fiber + 800nm parylene-C = 8.4um.
    • Cytec Thoronel T-650 CF, Youngs modulus = 255 GPa, tensile strength = 4.28 GPa, PAN-based.
  • Everything protected with our wonderful phenol epoxy 353NDT, heat-cure.
  • Used two coating solutions:
    • Solution of 0.01 M 3,4-ethylenedioxythiophene (483028, Sigma-Aldrich, St. Louis, MO): 0.1 M sodium p-toluenesulfonate (152536, Sigma-Aldrich, St. Louis, MO).
      • pTS is not that dissimilar from it's alkyl cousin, SPS, {1353}. Likely a soapy chemical due to the opposed methyl and sulfonic acid group; benzine will take up less room in the polymer c.f. SDS & may lower the oxidation potential of EDOT.
      • Tosylates have been explored as a EDOT counterion : PMID-22383043 Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection. and PEDOT-TMA
    • Solution was composed of 0.01 M 3,4-ethylene-dioxythiophene (483028, Sigma-Aldrich, St. Louis, MO):0.1 M polystyrene sulfonate (m.w. 70.000, 222271000, Acros, NJ).
    • For each solution the electrodeposition was carried out by applying 100 pA/channel for 600 s to form a layer of poly(3,4-ethylenedioxythiophene):sodium p-toluenesulfonate (PEDOT:pTS) or poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS).
      • Weird, would use voltage control here..
  • According to works by Green et al [45] and Hukins et al [46], equation (1) can be used to determine the aging time that
the fibers have undergone: t 37=t TQ10 T37)/10 where t 37 is the simulated aging time at 37 °C, t T is the amount of real time that the samples have been kept at the elevated temperature, T , and Q10 is an aging factor that is equal to 2, according to ASTM guidelines for polymer aging [47].
  • Show > 2MOhm impedance of the small-area electrodes. At the aging endpoint, PEDOT:pTS had about half the impedance of PEDOT:PSS.
    • 4M PSS, 7M pTS, both plated down to ~ 130k initial, went up to 2M pSS, 840k pTS.
  • Recording capability quite stellar
  • Likewise for the glial response.

{1384}
hide / edit[0] / print
ref: -0 tags: NET probes SU-8 microfabrication sewing machine carbon fiber electrode insertion mice histology 2p date: 03-01-2017 23:20 gmt revision:0 [head]

Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration

  • SU-8 asymptotic H2O absorption is 3.3% in PBS -- quite a bit higher than I expected, and higher than PI.
  • Faced yield problems with contact litho at 2-3um trace/space.
  • Good recordings out to 4 months!
  • 3 minutes / probe insertion.
  • Fab:
    • Ni release layer, Su-8 2000.5. "excellent tensile strength" --
      • Tensile strength 60 MPa
      • Youngs modulus 2.0 GPa
      • Elongation at break 6.5%
      • Water absorption, per spec sheet, 0.65% (but not PBS)
    • 500nm dielectric; < 1% crosstalk; see figure S12.
    • Pt or Au rec sites, 10um x 20um or 30 x 30um.
    • FFC connector, with Si substrate remaining.
  • Used transgenic mice, YFP expressed in neurons.
  • CA glue used before metabond, followed by Kwik-sil silicone.
  • Neuron yield not so great -- they need to plate the electrodes down to acceptable impedance. (figure S5)
    • Measured impedance ~ 1M at 1khz.
  • Unclear if 50um x 1um is really that much worse than 10um x 1.5um.
  • Histology looks realyl great, (figure S10).
  • Manuscript did not mention (though the did at the poster) problems with electrode pull-out; they deal with it in the same way, application of ACSF.

{1378}
hide / edit[0] / print
ref: -0 tags: carbon fiber thread spinning Pasquali Kemere nanotube stimulation date: 02-09-2017 01:09 gmt revision:0 [head]

PMID-25803728 Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.

  • Poulin et al. demonstrated that microelectrodes made solely of CNT fibers22 show remarkable electrochemical activity, sensitivity, and resistance to biofouling compared to conventional carbon fibers when used for bioanalyte detection in vitro.23-25
  • Fibers were insulated with 3 um of block copolymer polystyrene-polybutadiene (PS-b-PBD) (polybutadiene is sythetic rubber)
    • Selected for good properties of biocompatibility, flexibility, resistance to flextural fatigue.
    • Available from Sigma-Aldrich.
    • Custom continuous dip-coating process.
  • 18um diameter, 15 - 20 x lower impedance than equivalently size PtIr.
    • 2.5 - 6x lower than W.
    • In practice, 43um dia, 1450um^2, impedance of 11.2 k; 12.6um, 151k.
  • Charge storage capacity 327 mC / cm^2; PtIr = 1.2 mC/cm^2
  • Wide water window of -1.5V - 1.5V, consistent with noble electrochemical properties of C.
  • Lasts for over 97e6 pulsing cycles beyond the water window, vs 43e6 for PEDOT.
  • Tested via 6-OHDA model of PD disease vs. standard PtIr stimulating electrodes, implanted via 100um PI shuttled attached with PEG.
  • Yes, debatable...
  • Tested out to 3 weeks durability. Appear to function as well or better than metal electrodes.

PMID-23307737 Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.

  • Full process:
    1. Dissolve high-quality, 5um long CNT in chlorosulfonic acid (the only known solvent for CNTs)
    2. Filter to remove particles
    3. Extrude liquid crystal dope through a spinneret, 65 or 130um orifice
    4. Into a coagulant, acetone or water
    5. Onto a rotating drum to put tension on the thread & align the CNTs.
    6. Wash in water and dry at 115C.
  • Properties:
    • Tensile strength 1 GPa +- 0.2 GPa.
    • Tensile modulus 120 GPa +- 50, best value 200 GPa
      • Pt: 168 GPa ; Au: 79 GPa.
    • Elongation to break 1.4 %
    • Conductivity: 0.3 MS/m, Iodine doped 5 +- 0.5 MS/m (22 +- 4 microhm cm)
      • Cu: 59.6 MS/m ; Pt: 9.4 MS/m ; Au: 41 MS/m
      • Electrical conductivity drops after annealing @ 600C
      • But does not drop after kinking and repeated mechanical cycling.
  • Theoretical modulus of MWCNT ~ 350 GPa.
  • Fibers well-aligned at ~ 90% the density (measure 1.3 g/cc) of close-packed CNT.

{1373}
hide / edit[4] / print
ref: -0 tags: carbon fiber pitch based tensile strength date: 02-04-2017 00:07 gmt revision:4 [3] [2] [1] [0] [head]

Contenders for high-modulus pitch-based carbon fiber: "

CorpModelYoung's modulusTensile StrengthDiameter Elongation at break
Nippon Graphite Fiber CoGranoc XN-90860 GPa3.43 GPa10 um0.4%
Mitsubishi RayonK13D2U940 GPa3.21 GPa11 um0.36%
Cytec ThornelP-120830 GPa2.41 GPa??0.3-0.5%
Cytec ThornelK1100965 GPa3.10 GPa10 um??

Tensile and Flextural Prperties of single carbon fibers

  • High modulus pitch-based carbon fibers have quite low compressive and shear strengths. The flexural strength could be affected strongly by its low strength under compression and shear loading.

{1278}
hide / edit[5] / print
ref: -0 tags: carbon fiber electrode array parylene fire sharpening microthread date: 03-20-2014 19:57 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-23860226 A carbon-fiber electrode array for long-term neural recording.

  • Guitchounts G1, Markowitz JE, Liberti WA, Gardner TJ.
  • We describe an assembly method for a 16-channel electrode array consisting of carbon fibers (<5 µm diameter) individually insulated with Parylene-C and fire-sharpened. The diameter of the array is approximately 26 µm along the full extent of the implant.
  • Fibers from http://www.goodfellowusa.com/
    • young's modulus of 380GPa vs. tungsten 400GPa.
    • Data available from Toho Tenax
  • The absence of any report of single neuron isolation in HVC with a fixed chronic electrode implant underscores the difficulty of recording small cells (8-15um soma) with an implant whose damage length scale is large relative to the target neurons. (!!)

{1060}
hide / edit[2] / print
ref: -0 tags: electrode carbon fiber MEA date: 04-22-2013 18:19 gmt revision:2 [1] [0] [head]

PMID-21228307 Ultrasmall and customizable multichannel electrodes for extracellular recordings

  • 7um carbon fiber electrodes.
  • It has been estimated that insertion of a 50 um wire in the adult rat hippocampus CA1 area could damage 90% of the neurons that would otherwise be recordable by the electrode (Claverol-Tinture and Nadasdy 2004)
  • Highlight the tetrode effect: it's like beam forming.
  • Carbon fibers from Goodfellow Cambridge.
  • Insulated with a pulled micropipette.
  • Added insulation with cathodic electrodeposition paint (Claerclad HSR)
  • focused ion beam milling (FIB) (Qiao et al 2005) -- working resolution below 10nm.
  • The carbon fibers were fond to be stiff enough to penetrate the fly 'dura'.

{1200}
hide / edit[7] / print
ref: Kim-2004.05 tags: histology electrode immune response Tresco hollow fiber membranes GFAP vimentin ED1 date: 01-28-2013 03:08 gmt revision:7 [6] [5] [4] [3] [2] [1] [head]

PMID-14741588[0] Chronic response of adult rat brain tissue to implants anchored to the skull.

  • The increase in tissue reactivity observed with transcranially implanted HFMs may be influenced by several mechanisms including chronic contact with the meninges and possibly motion of the device within brain tissue.
  • Broadly speaking, our results suggest that any biomaterial, biosensor or device that is anchored to the skull and in chronic contact with meningeal tissue will have a higher level of tissue reactivity than the same material completely implanted within brain tissue.
  • See also [1]
  • Could slice through the hollow fiber membrane for histology. (as we shall).
  • Good list of references.

____References____

[0] Kim YT, Hitchcock RW, Bridge MJ, Tresco PA, Chronic response of adult rat brain tissue to implants anchored to the skull.Biomaterials 25:12, 2229-37 (2004 May)
[1] Biran R, Martin DC, Tresco PA, The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull.J Biomed Mater Res A 82:1, 169-78 (2007 Jul)

{746}
hide / edit[11] / print
ref: Sanders-2000.1 tags: polymer fiber immune reaction biocompatibility rats polycaprolactone recording electrodes histology MEA date: 01-28-2013 00:01 gmt revision:11 [10] [9] [8] [7] [6] [5] [head]

PMID-10906696[0] Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density.

  • Fibers smaller than 6μm show reduced immune response.
    • Fibers implanted in the subcutaneous dorsum (below the skin in the back of rats).
    • Polypropylene. (like rope).
    • Wish the result extended to small beads & small electrodes. 7μm is tiny, but possible with insulated Au wires.
      • Beads: try PMID-1913150 -- shows that the 600um - 50um beads ('microspheres') are well tolerated.
      • Also {750}.
  • Macrophage density in tissue with fiber diameters 2.1-5.9um comparable to that of unoperated contralateral control.

"

fiber diametercapsule thickness
2.1-5.90.6
6.5-10.611.7
11.1-15.820.3
16.7-26.725.5

____References____

[0] Sanders JE, Stiles CE, Hayes CL, Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density.J Biomed Mater Res 52:1, 231-7 (2000 Oct)

{27}
hide / edit[1] / print
ref: notes-0 tags: VOR OKR climbing_fibers cerebellum purkinje cells date: 02-05-2007 23:45 gmt revision:1 [0] [head]

  • Motor Coding in Floccular Climbing fibers
  • On climbing fiber signals and their consequences 1996, review
  • The site of a motor memory shifts with consolidation
  • Learning in a simple motor system (February 2006)
    • in the abstract: "we propose that short-term motor memory is initially stored in the cerebellar cortex, and during consolodation the motor memory locus shifts to include a brainstem site"
      • ISO learning as a method of consolodation, reflex-adatpation and internalization? that would be cool.
    • a good diagram of the system for the lateral rectus
    • due to its pivotal nature, motor learning may have been one of the first forms of learning to be implemented by biology. "universal in freely-moving animals"
    • these authors define it as procedural - does not require conscious attention (but it can be influenced by it)
    • eye movements procedurally simpler than arm movements, which I've spent some time looking at.
      • lately, I've been having to do a lot of this, after my glasses lost one earpeice and have been moving about since :) slight changes in the angles of the lenses are very noticeable.
    • I thought that the theory for this system would be complete by now, and ready for the application to more complicated motor movements, but this is not so. The thoeries are still a bit controversial, and require a molecular understanding.
---- Description of the system: see figure. need to label this on the slides. (comment: I'm sure many of you know this better than i, but for review ...) need diagram of the direction that the eyes turn, including the lateral/medial rectus muscles. Note that the eyes are stabilized in the two other directions - pitch and roll. here we study yaw, but people have demonstrated the same effects in the other directions. { cat and human have gain < 1, monkey just about 1 (perfect) - humans require extra input, via OKR} - basic circuit known since 1967 (Eccles). - Maekawa and Simpson: the cerebelar purkinje cell recieves climbing fiber input from the inferior olivary nucleus that encodes visual information. - information about ongoing movements arrives at the lateral vestibulocerebellum via mossy fivers from the dorsolateral pontine nuclei. - some mossy fibers also carry visual information. - purkinje cells project directly back to the vestibular nuclei.