m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
[0] Westby GW, Wang H, A floating microwire technique for multichannel chronic neural recording and stimulation in the awake freely moving rat.J Neurosci Methods 76:2, 123-33 (1997 Oct 3)

{1399}
hide / edit[1] / print
ref: -0 tags: kozai CMC dissolving insertion shuttle parylene date: 12-28-2017 03:19 gmt revision:1 [0] [head]

PMID-25128375 Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes.

  • CMC = carboxymethyl cellulose, commonly used as a food additive, in toothpaste, etc.
  • To address CMC dissolution, we developed a sophisticated targeting, high speed insertion (∼80 mm/s), and release system to implant shuttles.
  • Cross section of the probes are large, 300 x 125um and 100 x 125um.
  • Beautiful histology: the wound does gradually close up as the CMC dissolves, but no e-phys.

{1398}
hide / edit[0] / print
ref: -0 tags: platinum parylene electrodes brush dissolving stiffener gelatin date: 12-28-2017 02:44 gmt revision:0 [head]

PMID-27159159 Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers.

  • 12.5um pure Pt wires
  • Coated in 4um parylene-C
  • stiffened with gelatin
  • further protected with Kollicoat to retard dissolution.
  • Used a pulsed UV laser to ablate parylene, cut the platinum, and roughen the recording site.
  • See also {311}

{311}
hide / edit[5] / print
ref: Westby-1997.1 tags: recording microwire electrode MEA sweet sucrose saliva dissolving FET floating date: 01-28-2013 00:28 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-9350963 A floating microwire technique for multichannel neural recording and stimulation in the awake rat

  • sweet electrodes -- attached to glass micropipette with sucrose or saliva.
    • Chorover and DeLuca 1972 "A sweet new multiple electrode for chronic single unit recording". {1019}
  • 42 implanted rats, 252 implanted wires, 79% yield. 62% of electrodes still working at 5 weeks.
    • Targeting an area with really large somas (50um).
  • fully-floating 25um microwire ellectrodes.
  • platinum iridium, 25um, teflon coated, handled only with silastic-protected pliers & tweezers to prevent damage to the insulation.
  • electrode impdance range 200-900kOhms; check insulation by applying -3V to each electrode & looking for hydrogen bubbles.
  • soldering hardens platinum iridium alloy (huh).
  • (!!!) wires are stiffened for implantation by temporarily attaching them to a micropipette guide with sucrose which subsequently dissolves in the brain!
  • the smooth sucrose (40 grams in 50ml of water heated to 118C) coating requires about a week of desiccation to become hard enough for insertion into the brain without premature softening. Sucrose becomes clear like glass once fully desiccated.
  • the air above the craniotomy is sufficiently humid to dissolve the sucrose if left there for more than a few seconds.
  • used a miniature single-channel FET amplifier as a headstage - only one channel out of 6 could be recorded at once :( Thus their reults only apply to the best of the microwires implanted - not to all of them.
  • recorded onto a mac quadra (hahah) 20khz 12 bit
  • applying 160ua microstimulation pulses can restore low (200kohm) electrode impedance. Recording quality was generally improved for a few days following stimulation but then returned to an asymptotic level with the impedance at approximately 900kOhm.
  • electrodes only seemed to last 5 weeks, whence they declined to about 27% yeild - see figure 8.
  • good review of microelectrode recording up to that point (1997).

____References____

{1198}
hide / edit[5] / print
ref: Harris-2011.12 tags: mechanically adaptive electrodes implants case western dissolving flexible histology Harris date: 01-25-2013 01:39 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-22049097[0] Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies.

  • See also [1]
  • Initial tensile modulus of 5GPa dropped to 12MPa. (almost 500-fold!)
    • Their polymer nanocomposite (NC) still swells 65-70% (with water?)
    • Implant size 100 x 200um.
  • Controlled with tungsten of identical size and coating.
  • Tethered to skull.
  • Interesting:
    • The neuronal nuclei density within 100 µm of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire.
    • At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite.
    • Hypothesis, in discussion: softer implants are affecting the time-course of the response rather that final results
  • The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire
  • Cultured astrocytes have been shown to respond to mechanical stimuli via calcium signaling (Ostrow and Sachs, 2005).
  • Substrate stiffness is also known to shift cell differentiation in mesenchymal stem cells to be neurogenic, myogenic, or osteogenic (Engler et al., 2006).
  • In vivo studies which focus on the effects of electrode tethering have shown that untethered implants reduce the extent of the glial scar (Biran et al., 2007; Kim et al., 2004; Subbaroyan, 2007)
  • Parylene, polymide, and PDMS still each have moduli 6 orders of mangitude larger than that of the brain.
  • In some of their plots, immune response is higher around the nanocomposites!
    • Could be that their implant is still too large / stiff?
  • Note that recent research shows that vitemin may have neuroprotective effects --
    • Research has linked vimentin expression to rapid neurite extension in response to damage (Levin et al., 2009)
    • NG2+ cells that express vimentin have been proposed to support repair of central nervous system (CNS) damage, and stabilize axons in response to dieback from ED1+ cells (Alonso, 2005; Nishiyama, 2007; Busch et al., 2010)
  • Prior work (Frampton et al., 2010 PMID-20336824[2]) hypothesizes that a more compact GFAP response increases the impedance of an electrode which may decrease the quality of electrode recordings.

____References____

[0] Harris JP, Capadona JR, Miller RH, Healy BC, Shanmuganathan K, Rowan SJ, Weder C, Tyler DJ, Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies.J Neural Eng 8:6, 066011 (2011 Dec)
[1] Harris JP, Hess AE, Rowan SJ, Weder C, Zorman CA, Tyler DJ, Capadona JR, In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes.J Neural Eng 8:4, 046010 (2011 Aug)
[2] Frampton JP, Hynd MR, Shuler ML, Shain W, Effects of glial cells on electrode impedance recorded from neuralprosthetic devices in vitro.Ann Biomed Eng 38:3, 1031-47 (2010 Mar)

{1208}
hide / edit[2] / print
ref: Lewitus-2011.08 tags: dissolving polymer electrodes histology degrading date: 01-25-2013 01:31 gmt revision:2 [1] [0] [head]

PMID-21609850[0] The fate of ultrafast degrading polymeric implants in the brain.

  • Tyrosene-derived terpolymer (protein?) dissolves within hours & was re-absorbed.
  • Second terpolymer degrades quickly but is not resorbed.
    • This type resulted in continuous glial activation and loss of neural tissue compared to first.
  • Makes sense, not unexpected.

____References____

[0] Lewitus DY, Smith KL, Shain W, Bolikal D, Kohn J, The fate of ultrafast degrading polymeric implants in the brain.Biomaterials 32:24, 5543-50 (2011 Aug)

{1061}
hide / edit[1] / print
ref: -0 tags: Najafi electrode spring dissolving Michigan date: 01-16-2012 17:55 gmt revision:1 [0] [head]

IEEE-5969351 (pdf) New class of chronic recording multichannel neural probes with post-implant self-deployed satellite recording sites