m8ta
use https for features.
text: sort by
tags: modified
type: chronology
{1441}
hide / / print
ref: -2018 tags: biologically inspired deep learning feedback alignment direct difference target propagation date: 03-15-2019 05:51 gmt revision:5 [4] [3] [2] [1] [0] [head]

Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures

  • Sergey Bartunov, Adam Santoro, Blake A. Richards, Luke Marris, Geoffrey E. Hinton, Timothy Lillicrap
  • As is known, many algorithms work well on MNIST, but fail on more complicated tasks, like CIFAR and ImageNet.
  • In their experiments, backprop still fares better than any of the biologically inspired / biologically plausible learning rules. This includes:
    • Feedback alignment {1432} {1423}
    • Vanilla target propagation
      • Problem: with convergent networks, layer inverses (top-down) will map all items of the same class to one target vector in each layer, which is very limiting.
      • Hence this algorithm was not directly investigated.
    • Difference target propagation (2015)
      • Uses the per-layer target as h^ l=g(h^ l+1;λ l+1)+[h lg(h l+1;λ l+1)]\hat{h}_l = g(\hat{h}_{l+1}; \lambda_{l+1}) + [h_l - g(h_{l+1};\lambda_{l+1})]
      • Or: h^ l=h l+g(h^ l+1;λ l+1)g(h l+1;λ l+1)\hat{h}_l = h_l + g(\hat{h}_{l+1}; \lambda_{l+1}) - g(h_{l+1};\lambda_{l+1}) where λ l\lambda_{l} are the parameters for the inverse model; g()g() is the sum and nonlinearity.
      • That is, the target is modified ala delta rule by the difference between inverse-propagated higher layer target and inverse-propagated higher level activity.
        • Why? h lh_{l} should approach h^ l\hat{h}_{l} as h l+1h_{l+1} approaches h^ l+1\hat{h}_{l+1} .
        • Otherwise, the parameters in lower layers continue to be updated even when low loss is reached in the upper layers. (from original paper).
      • The last to penultimate layer weights is trained via backprop to prevent template impoverishment as noted above.
    • Simplified difference target propagation
      • The substitute a biologically plausible learning rule for the penultimate layer,
      • h^ L1=h L1+g(h^ L;λ L)g(h L;λ L)\hat{h}_{L-1} = h_{L-1} + g(\hat{h}_L;\lambda_L) - g(h_L;\lambda_L) where there are LL layers.
      • It's the same rule as the other layers.
      • Hence subject to impoverishment problem with low-entropy labels.
    • Auxiliary output simplified difference target propagation
      • Add a vector zz to the last layer activation, which carries information about the input vector.
      • zz is just a set of random features from the activation h L1h_{L-1} .
  • Used both fully connected and locally-connected (e.g. convolution without weight sharing) MLP.
  • It's not so great:
  • Target propagation seems like a weak learner, worse than feedback alignment; not only is the feedback limited, but it does not take advantage of the statistics of the input.
    • Hence, some of these schemes may work better when combined with unsupervised learning rules.
    • Still, in the original paper they use difference-target propagation with autoencoders, and get reasonable stroke features..
  • Their general result that networks and learning rules need to be tested on more difficult tasks rings true, and might well be the main point of this otherwise meh paper.

{1439}
hide / / print
ref: -2006 tags: hinton contrastive divergence deep belief nets date: 02-20-2019 02:38 gmt revision:0 [head]

PMID-16764513 A fast learning algorithm for deep belief nets.

  • Hinton GE1, Osindero S, Teh YW.
  • Very highly cited contrastive divergence paper.
  • Back in 2006 yielded state of the art MNIST performance.
  • And, being CD, can be used in an unsupervised mode.

{1419}
hide / / print
ref: -0 tags: diffraction terahertz 3d print ucla deep learning optical neural networks date: 02-13-2019 23:16 gmt revision:1 [0] [head]

All-optical machine learning using diffractive deep neural networks

  • Pretty clever: use 3D printed plastic as diffractive media in a 0.4 THz all-optical all-interference (some attenuation) linear convolutional multi-layer 'neural network'.
  • In the arxive publication there are few details on how they calculated or optimized given diffractive layers.
  • Absence of nonlinearity will limit things greatly.
  • Actual observed performance (where thy had to print out the handwritten digits) rather poor, ~ 60%.

{1174}
hide / / print
ref: -0 tags: Hinton google tech talk dropout deep neural networks Boltzmann date: 02-12-2019 08:03 gmt revision:2 [1] [0] [head]

Brains, sex, and machine learning -- Hinton google tech talk.

  • Hinton believes in the the power of crowds -- he thinks that the brain fits many, many different models to the data, then selects afterward.
    • Random forests, as used in predator, is an example of this: they average many simple to fit and simple to run decision trees. (is apparently what Kinect does)
  • Talk focuses on dropout, a clever new form of model averaging where only half of the units in the hidden layers are trained for a given example.
    • He is inspired by biological evolution, where sexual reproduction often spontaneously adds or removes genes, hence individual genes or small linked genes must be self-sufficient. This equates to a 'rugged individualism' of units.
    • Likewise, dropout forces neurons to be robust to the loss of co-workers.
    • This is also great for parallelization: each unit or sub-network can be trained independently, on it's own core, with little need for communication! Later, the units can be combined via genetic algorithms then re-trained.
  • Hinton then observes that sending a real value p (output of logistic function) with probability 0.5 is the same as sending 0.5 with probability p. Hence, it makes sense to try pure binary neurons, like biological neurons in the brain.
    • Indeed, if you replace the backpropagation with single bit propagation, the resulting neural network is trained more slowly and needs to be bigger, but it generalizes better.
    • Neurons (allegedly) do something very similar to this by poisson spiking. Hinton claims this is the right thing to do (rather than sending real numbers via precise spike timing) if you want to robustly fit models to data.
      • Sending stochastic spikes is a very good way to average over the large number of models fit to incoming data.
      • Yes but this really explains little in neuroscience...
  • Paper referred to in intro: Livnat, Papadimitriou and Feldman, PMID-19073912 and later by the same authors PMID-20080594
    • A mixability theory for the role of sex in evolution. -- "We define a measure that represents the ability of alleles to perform well across different combinations and, using numerical iterations within a classical population-genetic framework, show that selection in the presence of sex favors this ability in a highly robust manner"
    • Plus David MacKay's concise illustration of why you need sex, pg 269, __Information theory, inference, and learning algorithms__
      • With rather simple assumptions, asexual reproduction yields 1 bit per generation,
      • Whereas sexual reproduction yields G\sqrt G , where G is the genome size.

{1422}
hide / / print
ref: -0 tags: lillicrap segregated dendrites deep learning backprop date: 01-31-2019 19:24 gmt revision:2 [1] [0] [head]

PMID-29205151 Towards deep learning with segregated dendrites https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716677/

  • Much emphasis on the problem of credit assignment in biological neural networks.
    • That is: given complex behavior, how do upstream neurons change to improve the task of downstream neurons?
    • Or: given downstream neurons, how do upstream neurons receive ‘credit’ for informing behavior?
      • I find this a very limiting framework, and is one of my chief beefs with the work.
      • Spatiotemporal Bayesian structure seems like a much better axis (axes) to cast function against.
      • Or, it could be segregation into ‘signal’ and ‘error’ or ‘figure/ground’ based on hierarchical spatio-temporal statistical properties that matters ...
      • ... with proper integration of non-stochastic spike timing + neoSTDP.
        • This still requires some solution of the credit-assignment problem, i know i know.
  • Outline a spiking neuron model with zero one or two hidden layers, and a segregated apical (feedback) and basal (feedforward) dendrites, as per a layer 5 pyramidal neuron.
  • The apical dendrites have plateau potentials, which are stimulated through (random) feedback weights from the output neurons.
  • Output neurons are forced to one-hot activation at maximum firing rate during training.
    • In order to assign credit, feedforward information must be integrated separately from any feedback signals used to calculate error for synaptic updates (the error is indicated here with δ). (B) Illustration of the segregated dendrites proposal. Rather than using a separate pathway to calculate error based on feedback, segregated dendritic compartments could receive feedback and calculate the error signals locally.
  • Uses the MNIST database, naturally.
  • Poisson spiking input neurons, 784, again natch.
  • Derive local loss function learning rules to make the plateau potential (from the feedback weights) match the feedforward potential
    • This encourages the hidden layer -> output layer to approximate the inverse of the random feedback weight network -- which it does! (At least, the jacobians are inverses of each other).
    • The matching is performed in two phases -- feedforward and feedback. This itself is not biologically implausible, just unlikely.
  • Achieved moderate performance on MNIST, ~ 4%, which improved with 2 hidden layers.
  • Very good, interesting scholarship on the relevant latest findings ‘’in vivo’’.
  • While the model seems workable though ad-hoc or just-so, the scholarship points to something better: use of multiple neuron subtypes to accomplish different elements (variables) in the random-feedback credit assignment algorithm.
    • These small models can be tuned to do this somewhat simple task through enough fiddling & manual (e.g. in the algorithmic space, not weight space) backpropagation of errors.
  • They suggest that the early phases of learning may entail learning the feedback weights -- fascinating.
  • ‘’Things are definitely moving forward’’.

{1412}
hide / / print
ref: -0 tags: deeplabcut markerless tracking DCN transfer learning date: 10-03-2018 23:56 gmt revision:0 [head]

Markerless tracking of user-defined features with deep learning

  • Human - level tracking with as few as 200 labeled frames.
  • No dynamics - could be even better with a Kalman filter.
  • Uses a Google-trained DCN, 50 or 101 layers deep.
    • Network has a distinct read-out layer per feature to localize the probability of a body part to a pixel location.
  • Uses the DeeperCut network architecture / algorithm for pose estimation.
  • These deep features were trained on ImageNet
  • Trained on examples with both only the readout layers (rest fixed per ResNet), as well as end-to-end; latter performs better, unsurprising.

{1408}
hide / / print
ref: -2018 tags: machine learning manifold deep neural net geometry regularization date: 08-29-2018 14:30 gmt revision:0 [head]

LDMNet: Low dimensional manifold regularized neural nets.

  • Synopsis of the math:
    • Fit a manifold formed from the concatenated input ‘’and’’ output variables, and use this set the loss of (hence, train) a deep convolutional neural network.
      • Manifold is fit via point integral method.
      • This requires both SGD and variational steps -- alternate between fitting the parameters, and fitting the manifold.
      • Uses a standard deep neural network.
    • Measure the dimensionality of this manifold to regularize the network. Using a 'elegant trick', whatever that means.
  • Still yet he results, in terms of error, seem not very significantly better than previous work (compared to weight decay, which is weak sauce, and dropout)
    • That said, the results in terms of feature projection, figures 1 and 2, ‘’do’’ look clearly better.
    • Of course, they apply the regularizer to same image recognition / classification problems (MNIST), and this might well be better adapted to something else.
  • Not completely thorough analysis, perhaps due to space and deadlines.

{1333}
hide / / print
ref: -0 tags: deep reinforcement learning date: 04-12-2016 17:19 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

Prioritized experience replay

  • In general, experience replay can reduce the amount of experience required to learn, and replace it with more computation and more memory – which are often cheaper resources than the RL agent’s interactions with its environment.
  • Transitions (between states) may be more or less
    • surprising (does the system in question have a model of the environment? It does have a model of the state & action expected reward, as it's Q-learning.
    • redundant, or
    • task-relevant
  • Some sundry neuroscience links:
    • Sequences associated with rewards appear to be replayed more frequently (Atherton et al., 2015; Ólafsdóttir et al., 2015; Foster & Wilson, 2006). Experiences with high magnitude TD error also appear to be replayed more often (Singer & Frank, 2009 PMID-20064396 ; McNamara et al., 2014).
  • Pose a useful example where the task is to learn (effectively) a random series of bits -- 'Blind Cliffwalk'. By choosing the replayed experiences properly (via an oracle), you can get an exponential speedup in learning.
  • Prioritized replay introduces bias because it changes [the sampled state-action] distribution in an uncontrolled fashion, and therefore changes the solution that the estimates will converge to (even if the policy and state distribution are fixed). We can correct this bias by using importance-sampling (IS) weights.
    • These weights are the inverse of the priority weights, but don't matter so much at the beginning, when things are more stochastic; they anneal the controlling exponent.
  • There are two ways of selecting (weighting) the priority weights:
    • Direct, proportional to the TD-error encountered when visiting a sequence.
    • Ranked, where errors and sequences are stored in a data structure ordered based on error and sampled 1/rank\propto 1 / rank .
  • Somewhat illuminating is how the deep TD or Q learning is unable to even scratch the surface of Tetris or Montezuma's Revenge.

{1269}
hide / / print
ref: -0 tags: hinton convolutional deep networks image recognition 2012 date: 01-11-2014 20:14 gmt revision:0 [head]

ImageNet Classification with Deep Convolutional Networks