m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
{1395}
hide / edit[0] / print
ref: -0 tags: Courtine e-dura PDMS silicone gold platinum composite stretch locomotion restoration rats date: 12-22-2017 01:59 gmt revision:0 [head]

PMID-25574019 Biomaterials. Electronic dura mater for long-term multimodal neural interfaces.

  • Fabrication:
    • 120um total PDMS thickness, made through soft lithography, covalent (O2 plasma) bonding between layers
    • 35nm of Au (thin!) deposited through a stencil mask.
    • 300um Pt-PDMS composite for electrode sites, deposited via screenprinting
  • 100 x 200um cross section drug delivery channel.
  • Compared vs. stiff 25um thick PI film electrode.
    • stiff implants showed motor impairments 1-2 weeks after implantation.
  • Showed remarkable recovery of supported locomotion with stimulation and drug infusion (to be followed by monkeys).

{897}
hide / edit[5] / print
ref: Harris-2011.08 tags: microelectrodes nanocomposite immune response glia recording MEA date: 01-27-2013 22:19 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-21654037[0] In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes

  • J P Harris, A E Hess, S J Rowan, C Weder, C A Zorman, D J Tyler and J R Capadona Case Western University.
  • Simple idea: electrodes should be rigid enough to penetrate the brain, yet soft enough to not damage it once implanted.
  • Many studies have shown that shear stress around a microelectrode shaft causes neural die-off and glial response.
  • You can only record from neurons if they are < 100um from the electrode tip.
  • Nanocomposite material is inspired by sea cucumber skin.
    • Our materials exhibit this behaviour by mimicking the architecture and proposed switching mechanism at play in the sea cucumber dermis by utilizing a polymer NC consisting of a controllable structural scaffold of rigid cellulose nanofibres embedded within a soft polymeric matrix. When the nanofibres percolate, they interact with each other through hydrogen bonding and form a nanofibre network that becomes the load-bearing element, leading to a high overall stiffness of the NC. When combined with a polymer system which additionally undergoes a phase transition at physiologically relevant temperatures, a contrast of over two orders of magnitude for the tensile elastic modulus is exhibited.
  • Probes were 200um wide, 100um thick, and had a point sharpened to 45deg.
  • Buckle force testing was done on 53um thick, 125um wide probes sharpened to a 30deg point.
  • Penetration stress through the rat pia is 1.2e7 dynes/cm^2 for a Si probe 40um thick and 80um wide.
  • See also {1198}

____References____

[0] Harris JP, Hess AE, Rowan SJ, Weder C, Zorman CA, Tyler DJ, Capadona JR, In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes.J Neural Eng 8:4, 046010 (2011 Aug)