m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
{1392}
hide / edit[0] / print
ref: -0 tags: lieber mesh electronics SU-8 recording electrodes flexible polymer glass capillary date: 12-22-2017 00:14 gmt revision:0 [head]

PMID-29109247 Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology

  • Key change was the addition of multiple conductor traces per longitudinal mesh line; this allows them to get 64 or 128 channels per mesh without a dramatic increase in modulus.
  • The latitudinal / diagonal lines still displace tissue ...
  • And the injection mechanism, glass pipette, 650um OD, 400um ID, is pretty large, even for 128 channels.
  • Use carbon nanotube ink, custom CNC printer, to connect to FPC.
    • Pretty impressive that they can manipulate ~800nm thick Su-8 film intraop and have it work well!

{223}
hide / edit[0] / print
ref: physics notes-0 tags: plasma physics electromagnet tesla coil copper capillary tubing calculations date: 02-23-2007 16:01 gmt revision:0 [head]

calculations for a strong DC loop magnet using 1/8" copper capillary tubing:

  1. OD .125" = 3.1.7mm^2; ID 0.065 -> copper area = 23.2mm^2 ~= AWG 4
  2. AWG 4 = 0.8 ohms/km
  3. length of tubing: 30' ~= 40 turns @ 9" each (windings packed into a torus of major radius 1.5"; minor radius 0.5")
  4. water flow rate through copper capillary tubing: 1 liter/min; assuming we can heat it up from 30C -> 100C, this is 70KCal = 292 KJ/min = 4881 W total. (better pipe it into our hot water heater!)
  5. 4.8kw / 9m of tubing = 540 W/m
  6. 540W/m / 8e-4 = 821 A ; V = 821 * 9 * 8e-4 = 5.9V (!!! where the hall am i going to get that kind of power?)
  7. 821A * 40 turns = 32.8KA in a loop major radius 1.5" = 3.8cm
  8. magnetic field of a current loop -> B = 0.54T
  9. lamour radius: 5eV electrons @B = 0.54T : 15um; proton: 2.7cm; electrons @1KeV ~= 2.66e8 (this is close to the speed of light?) r = 3mm.