m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
{1250}
hide / edit[7] / print
ref: -0 tags: polyimide electrodes thermosonic bonding Stieglitz adhesion delamination date: 03-06-2017 21:58 gmt revision:7 [6] [5] [4] [3] [2] [1] [head]

IEEE-6347149 (pdf) Improved polyimide thin-film electrodes for neural implants 2012

  • Tested adhesion to Pt / SiC using accelerated aging in saline solution.
  • Targeted at retinal prostheses.
  • Layer stack:
    • 50nm SiC deposited through PECVD @ 100C using SPS, with low frequency RF modulation.
    • 100nm Pt
    • 100nm Au
    • 100nm Pt
      • These layers will alloy during cure, and hence reduce stress.
    • 30nm SiC
    • 10nm DLC (not needed, imho; PI sticks exceptionally well to clean SiC)
  • Recent studies have concluded that adhesion to PI is through carbon bindings and not through oxide formation.
    • Adhesion of polyimide to amorphous diamond-like carbon and SiC deteriorates at a minimal rate.
  • Delamination is caused by residual stress, which is not only inevetable but a major driving force for cracking in thin films.
    • Different CTE in layer stack -> different contraction when cooling from process temperature.
  • Platinum, which evaporates at 1770C, and is deposited ~100C (photoresists only withstand ~115C) results in a high-stress interface.
    • Pt - Carbon bonds only occur above 1000C
  • After 9 and 13 days of incubation the probes with 400 nm and 300nm of SiC, respectively, which were not tempered, showed complete delamination of the Pt from the SiC.
    • 60C, 0.9 M NaCl, 1 year.
    • The SiC remained attached to the PI.
      • Tempering: repeated treatment at 450C for 15 min in a N2 atmosphere.
    • All other probes remained stable.
  • Notably, used thermosonic bonding to the PI films, using sputtered (seed layer) then 12um electroplated Au.
  • Also: fully cured the base layer PI film.
  • Used oxygen plasma de-scum after patterning with resists to get better SiC adhesion to PI.
    • And better inter-layer adhesion (fully cured the first polyimide layer @ 450C).
  • Conclusion: "The fact that none of the tempered samples delaminated even after ~5 years of lifetime (extrapolated for 37 C) shows a tremendous increase in adhesion.

{1299}
hide / edit[3] / print
ref: -0 tags: wirebonding finishes gold nickel palladium electroless electrolytic date: 09-21-2014 02:53 gmt revision:3 [2] [1] [0] [head]

Why palladium?


To prevent black nickel: http://tayloredge.com/reference/Electronics/PWB/BlackPad_ITRI_Round1.PD

Introduction The use of electroless nickel / immersion gold (E.Ni/I.Au) as a circuit board finish has grown significantly in the last few years. It provides a flat board finish, is very solderable, provides a precious metal contact surface and the nickel strengthens the plated holes. However, as the usage of E.Ni/I.Au increased, a problem was found on BGA (Ball Grid Array) components. An open or fractured solder joint sometimes appears after board assembly on the occasional BGA pad. The solder had wet and dissolved the gold and formed a weak intermetallic bond to the nickel. This weak bond to the nickel readily fractures under stress or shock, leaving an open circuit. The incidence of this problem appears to be very sporadic and a low ppm level problem, but it is very unpredictable. A BGA solder joint cannot be touched-up without the component being removed. After the BGA component is removed, a black pad is observed at the affected pad site. This black pad is not readily solderable, but it can be repaired.


From: http://www.smtnet.com/Forums/index.cfm?fuseaction=view_thread&Thread_ID=4430

You don't have enough gold. Your 2uin is too porous and is allowing the nickel to corrode. Prove that this by hand soldering to these pads with a more active flux, like a water soluble solder paste, than you are using.

You must have at least 3uin of immersion gold. Seriously consider >5uin.

Your nickel thickness is fine. Although if you wanted to trade costs, consider giving-up nickel to 150uin thickness, while increasing the gold thickness. Gold over electroless nickel creates brittle joints because of phosphorous in the nickel plating bath. The phosphorous migrates into the over-plating. Electrolytic nickel and gold plating should not be a problem.

If you stay with the electroless nickel, keep the phosphorous at a mid [7 - 9%] level. Just as important, don't let the immersion gold get too aggressive. The immersion gold works by corroding the nickel. If it is too aggressive it takes away the nickel and leave phosphorous behind. This makes it look like the phosphorous level is too high in the nickel bath.

Gold purity is very important for any type of wire bonding process. For aluminum wedge bonding, gold should have a purity of 99. 99% [no thalium] and the nickel becomes critical. No contaminates and the nickel wants to be plated a soft as possible. This requires good control of Ph and plating chemicals in the nickel-plating bath.

Harman "Wire Bonding In Microelectronics" McGraw-Hill is a good resource for troubleshooting wire bonding. I reviewed it in the SMTnet Newsletter a couple of months ago.


That said, electrolytic nickel + electrolytic gold does work well -- perhaps even better than ENEPIG:

{1242}
hide / edit[10] / print
ref: -0 tags: ACF chip bonding parylene field's metal polyimide date: 07-10-2013 18:34 gmt revision:10 [9] [8] [7] [6] [5] [4] [head]

We're making parylene electrodes for neural recording, and one critical step is connecting them to recording electronics.

Currently Berkeley uses ACF (anisotropic conductive film) for connection, which is widely used for connecting flex tape to LCD panels, or for connecting driver chips to LCD glass. According to the internet, pitches can be as low as 20um, with pad areas as low as 800um^2. source

However, this does not seem to be a very reliable nor compact process with platinum films on parylene, possibly because ACF bonding relies on raised areas between mated conductors (current design has the Pt recessed into the parylene), and on rigid substrates. ACF consists of springy polymer balls coated in Ni and Au and embedded in a thermoset epoxy resin. The ACF film is put under moderate temperature (180C) and pressure (3mpa, 430psi), which causes the epoxy to cure in a state that leaves the gold/nickel/polymer balls to be compressed between the two conductors. Hence, even if the conductors move slightly due to thermal cycling, the small balls maintain good mechanical and electrical contact. The balls are dispersed sufficiently in the epoxy matrix that there is little to no chance of conduction between adjacent pads.

(Or so I have learned from the internet.) Now, as mentioned, this is an imperfect method for joining Pt on parylene films, possibly because the parylene is so flexible, and the platinum foil is very thin (200-300 nm). Indeed, platinum does not bond very strongly to parylene, hence care must be taken to allow sufficient overlap to prevent water ingress. My proposed solution -- to be tested shortly -- is to use a low-melting temperature metal with strong wetting ability -- such as Field's metal (bismuth, tin, indium, melting point 149F, see http://www.gizmology.net/fusiblemetals.htm) to low-temperature solder the platinum to a carrier board (initially) or to a custom amplifier ASIC (later!). Parylene is stable to 200C (392F), so this should be safe. One worry is that the indium/bismuth will wet the parylene or polyimide, too; however I consider this unlikely due to the difficulty in attaching parylene to any metal.

That said, there must be good reason why ACF is so popular, so perhaps a better ultimate solution is to stiffen the parylene (or ultimately polyimide) substrate so that it can support both the temperature/pressure of ACF bonding and the stress of a continued electrical/mechanical bond to polyimide fan-out board or ASIC. It may also be possible to gold or nickel electroplate the connector pads to be slightly raised instead of recessed.


Update: ACF bond to rigid 1/2 oz copper, 4mil trace / space connector (3mil trace/space board):

Note that the copper traces are raised, and the parylene is stretched over the uneven surface (this is much easier to see with the stereo microscope). To the left of the image, the ACF paste has been sqeezed out from between the FR4 and parylene. Also note that the platinum can make potential contact with vias in the PCB.


Update 7/2: Fields metal (mentioned above) does stick to platinum reasonably well, but it also sticks to parylene (somewhat), and glass (exceptionally well!). In fact, I had a difficult time removing traces of field's metal from the Pyrex beakers that I was melting the metal with. These beakers were filled with boiling water, which may have been the problem.

When I added flux (Kester flux-pen 951 No-clean MSDS), the metal became noticeably more shiny, and the contact angle increased on the borosilicate glass (e.g. looked more like mercury); this leads me to believe that it is not the metal itself that attaches to glass, but rather oxides of indium and bismuth. Kester 951 flux consists of:

  • 2-propanol 15% (as a denaturing agent) boiling point 82.6C
  • Ethanol 73% (solvent) boiling point 78.3C
  • Butyl Acetate 7% boiling point 127C, flash point 27C
  • Methanol <3% b.p. 64.7C
  • Carboxylic acids < 3% -- proton donors? formic or oxalic acid?
  • Surfacants < 1% -- ?
Total boiling point is 173F.

After coating the parylene/platinum sample with flux, I raised the field's metal to the flux activation point, which released some smoke and left brown organic residues on the bottom of the glass dish. Then I dipped the parylene probe into the molten metal, causing the flux again to be activated, and partially wetting the platinum contacts. The figure below shows the result:

Note the incomplete wetting, all the white solids left from the process, and how the field's metal caused the platinum to delaminate from the parylene when the cable was (accidentally) flexed. Tests with platinum foil revealed that the metal bond was not actually that strong, significantly weaker than that made with a flux-core SnPb solder. also, I'm not sure of the activation temperature of this flux, and think I may have overheated the parylene.


Update 7/10:

Am considering electrodeless Ni / Pt / Au deposition, which occurs in aqueous solution, hence at much lower temperatures than e-beam evaporation Electrodeless Ni ref. On polyimide substrates, there is extensive literature describing how to activate the surface for plating: Polyimides and Other High Temperature Polymers: Synthesis ..., Volume 4. Parylene would likely need a different possibly more aggressive treatment, as it does not have imide bonds to open.

Furthermore, if the parylene / polyimide surface is *not* activated, the electrodeless plating could be specific to the exposed electrode and contact sites, which could help to solve the connector issue by strengthening & thickening the contact areas. The second fairly obvious solution is to planarize the contact site on the PCB, too, as seen above. ACF bonds can be quite reliable; last night I took apart (and successfully re-assembled) my 32" Samsung LCD monitor, and none of the flex-on-glass or chip-on-flex binds failed (despite my clumsy hands!).

{50}
hide / edit[0] / print
ref: bookmark-0 tags: teflon PTFE bonding metal polytetrafluoroethylene tetraflouroethylene date: 0-0-2006 0:0 revision:0 [head]

http://pslc.ws/mactest/ptfeidea.htm

block copolymer: http://en.wikipedia.org/wiki/Copolymer