m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
[0] Shuler MG, Bear MF, Reward timing in the primary visual cortex.Science 311:5767, 1606-9 (2006 Mar 17)

{1402}
hide / edit[1] / print
ref: -0 tags: recurrent cortical model adaptation gain V1 LTD date: 03-27-2018 17:48 gmt revision:1 [0] [head]

PMID-18336081 Adaptive integration in the visual cortex by depressing recurrent cortical circuits.

  • Mainly focused on the experimental observation that decreasing contrast increases latency to both behavioral and neural response (latter in the later visual areas..)
  • Idea is that synaptic depression in recurrent cortical connections mediates this 'adaptive integration' time-constant to maintain reliability.
  • Model also explains persistent activity after a flashed stimulus.
  • No plasticity or learning, though.
  • Rather elegant and well explained.

{630}
hide / edit[4] / print
ref: Shuler-2006.03 tags: reward V1 visual cortex timing reinforcement surprising date: 01-03-2012 02:33 gmt revision:4 [3] [2] [1] [0] [head]

PMID-16543459[0] Reward Timing in the Primary Visual Cortex

  • the responses of a substantial fraction of neurons in the primary visual cortex evolve from those that relate solely to the physical attributes of the stimuli to those that accurately predict the timing of reward.. wow!
  • rats. they put goggles on the rats to deliver full-fields retinal illumination for 400ms (isn't this cheating? full field?)
  • recorded from deep layers of V1
  • sensory processing does not seem to be reliable, stable, and reproducible...
  • rewarded only half of the trials, to see if the plasticity was a result of reward delivery or association of stimuli and reward.
  • after 5-7 sessions of training, neurons began to respond to the poststimulus reward time.
  • this was actually independent of reward delivery - only dependent on the time.
  • reward-related activity was only driven by the dominant eye.
  • individual neurons predict reward time quite accurately. (wha?)
  • responses continued even if the animal was no longer doing the task.
  • is this an artifact? of something else? what's going on? the suggest that it could be caused by subthreshold activity due to recurrent connections amplified by dopamine.

____References____