m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
[0] Buonomano DV, Merzenich MM, Cortical plasticity: from synapses to maps.Annu Rev Neurosci 21no Issue 149-86 (1998)

{1402}
hide / edit[1] / print
ref: -0 tags: recurrent cortical model adaptation gain V1 LTD date: 03-27-2018 17:48 gmt revision:1 [0] [head]

PMID-18336081 Adaptive integration in the visual cortex by depressing recurrent cortical circuits.

  • Mainly focused on the experimental observation that decreasing contrast increases latency to both behavioral and neural response (latter in the later visual areas..)
  • Idea is that synaptic depression in recurrent cortical connections mediates this 'adaptive integration' time-constant to maintain reliability.
  • Model also explains persistent activity after a flashed stimulus.
  • No plasticity or learning, though.
  • Rather elegant and well explained.

{627}
hide / edit[1] / print
ref: Buonomano-1998.01 tags: cortical plasticity learning review LTD LTP date: 10-07-2008 03:27 gmt revision:1 [0] [head]

PMID-9530495[0] Cortical plasticity: from synapses to maps

  • focuses on synaptic plasticity as the underlying mechanism of behavior-dependent cortical maps/representations.
  • "within limits, the cortex can allocate cortical area in a use-dependent manner"
  • synaptic plasticity -> STDP via NMDA, etc.
    • demonstrated with intracellular recordings of cat M1 & simultaneous stimulation of the ventrolateral thalamus & intracellular depolarization. Facilitation was short lasting and not present in all neurons.
    • demonstrated in rat auditory cortex / recording in layer 2/3 , stimulate layer 2/3 & White matter/6.
    • review of Ca+ hypothesis of LTP/LTD balance: if the Ca+ influc is below a threshold, LTD occurs; if it is above a certain threshold, LTP.
      • not sure how long LTD has been demonstrated -- 15 min?
  • cellular conditioning = direct induction of plastic changes in the selective responses of individual neurons in vivo as a result of short-term conditioning protocols. this is what we are interested in, for now.
    • this review does not explicitly deal with BG-DA / ACh reinforcement, only timing dependent plasticity, in visual and auditory cortex.
  • cortical plasticity:
    • talk about the revealing/unmasking of hidden responses when sections of cortex are deafferented or digits were amputated.
    • talk about training-based approaches: training increases cortical representation of a sensory modality / skill/ etc. The cortex can differentially 'allocate' area in a use-dependent manner throughout life.
    • cortical map changes are not reflected by changes in thalamic somatotopy.

____References____