use https for features.
text: sort by
tags: modified
type: chronology
{433} is owned by tlh24.
[0] Schmidt EM, Single neuron recording from motor cortex as a possible source of signals for control of external devices.Ann Biomed Eng 8:4-6, 339-49 (1980)[1] Schmidt EM, McIntosh JS, Durelli L, Bak MJ, Fine control of operantly conditioned firing patterns of cortical neurons.Exp Neurol 61:2, 349-69 (1978 Sep 1)[2] Salcman M, Bak MJ, A new chronic recording intracortical microelectrode.Med Biol Eng 14:1, 42-50 (1976 Jan)

[0] Harris CM, Wolpert DM, Signal-dependent noise determines motor planning.Nature 394:6695, 780-4 (1998 Aug 20)

hide / / print
ref: -2018 tags: Michael Levin youtube talk NIPS 2018 regeneration bioelectricity organism patterning flatworm date: 04-09-2019 18:50 gmt revision:1 [0] [head]

What Bodies Think About: Bioelectric Computation Outside the Nervous System - NeurIPS 2018

  • Short notes from watching the video, mostly interesting factoids: (This is a somewhat more coordinated narrative in the video. Am resisting ending each of these statements with and exclamation point).
  • Human children up to 7-11 years old can regenerate their fingertips.
  • Human embryos, when split in half early, develop into two normal humans; mouse embryos, when squished together, make one normal mouse.
  • Butterflies retain memories from their caterpillar stage, despite their brains liquefying during metamorphosis.
  • Flatworms are immortal, and can both grow and contract, as the environment requires.
    • They can also regenerate a whole body from segments, and know to make one head, tail, gut etc.
  • Single cell organisms, e.g. Lacrymaria, can have complex (and fast!) foraging / hunting plans -- without a brain or anything like it.
  • Axolotl can regenerate many parts of their body (appendages etc), including parts of the nervous system.
  • Frog embryos can self-organize an experimenter jumbled body plan, despite the initial organization having never been experienced in evolution.
  • Salamanders, when their tail is grafted into a foot/leg position, remodel the transplant into a leg and foot.
  • Neurotransmitters are ancient; fungi, who diverged from other forms of life about 1.5 billion years ago, still use the same set of inter-cell transmitters e.g. serotonin, which is why modulatory substances from them have high affinity & a strong effect on humans.
  • Levin, collaborators and other developmental biologists have been using voltage indicators in embryos ... this is not just for neurons.
  • Can make different species head shapes in flatworms by exposing them to ion-channel modulating drugs. This despite the fact that the respective head shapes are from species that have been evolving separately for 150 million years.
  • Indeed, you can reprogram (with light gated ion channels, drugs, etc) to body shapes not seen in nature or not explored by evolution.
    • That said, this was experimental, not by design; Levin himself remarks that the biology that generates these body plans is not known.
  • Flatworms can sore memory in bioelectric networks.
  • Frogs don't normally regenerate their limbs. But, with a drug cocktail targeting bioelectric signaling, they can regenerate semi-functional legs, complete with nerves, muscle, bones, and cartilage. The legs are functional (enough).
  • Manipulations of bioelectric signaling can reverse very serious genetic problems, e.g. deletion of Notch, to the point that tadpoles regain some ability for memory creation & recall.

  • I wonder how so much information can go through a the apparently scalar channel of membrane voltage. It seems you'd get symbol interference, and that many more signals would be required to pattern organs.
  • That said, calcium is used a great many places in the cell for all sorts of signaling tasks, over many different timescales as well, and it doesn't seem to be plagued by interference.
    • First question from the audience was how cells differentiate organismal patterning signals and behavioral signals, e.g. muscle contraction.

hide / / print
ref: -2015 tags: ice charles lieber silicon nanowire probes su-8 microwire extracellular date: 05-30-2018 23:40 gmt revision:3 [2] [1] [0] [head]

PMID-26436341 Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes.

  • Xie C1, Liu J1, Fu TM1, Dai X1, Zhou W1, Lieber CM1,2.
  • Again, use silicon nanowire transistors as sensing elements. These seem rather good; can increase the signal, and do not suffer from shunt resistance / capacitance like wires.
    • They're getting a lot of mileage out of the technology; initial pub back in 2006.
  • Su-8, Cr/Pd/Cr (stress elements) and Cr/Au/Cr (conductor) spontaneously rolled into a ball, then the froze in LN2. Devices seemed robust to freezing in LN2.
  • 300-500nm Su-8 passivation layers, as with the syringe injectable electrodes.
  • 3um trace / 7um insulation (better than us!)
  • Used 100nm Ni release layer; thin / stiff enough Su-8 with rigid Si support chip permitted wirebonding a connector (!!)
    • Might want to use this as well for our electrodes -- of course, then we'd have to use the dicing saw, and free-etch away a Ni (or Al?) polyimide adhesion layer -- or use Su-8 like them. See figure S-4
  • See also {1352}

hide / / print
ref: -0 tags: NET probes SU-8 microfabrication sewing machine carbon fiber electrode insertion mice histology 2p date: 12-29-2017 04:38 gmt revision:1 [0] [head]

PMID-28246640 Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration

  • SU-8 asymptotic H2O absorption is 3.3% in PBS -- quite a bit higher than I expected, and higher than PI.
  • Faced yield problems with contact litho at 2-3um trace/space.
  • Good recordings out to 4 months!
  • 3 minutes / probe insertion.
  • Fab:
    • Ni release layer, Su-8 2000.5. "excellent tensile strength" --
      • Tensile strength 60 MPa
      • Youngs modulus 2.0 GPa
      • Elongation at break 6.5%
      • Water absorption, per spec sheet, 0.65% (but not PBS)
    • 500nm dielectric; < 1% crosstalk; see figure S12.
    • Pt or Au rec sites, 10um x 20um or 30 x 30um.
    • FFC connector, with Si substrate remaining.
  • Used transgenic mice, YFP expressed in neurons.
  • CA glue used before metabond, followed by Kwik-sil silicone.
  • Neuron yield not so great -- they need to plate the electrodes down to acceptable impedance. (figure S5)
    • Measured impedance ~ 1M at 1khz.
  • Unclear if 50um x 1um is really that much worse than 10um x 1.5um.
  • Histology looks realyl great, (figure S10).
  • Manuscript did not mention (though the did at the poster) problems with electrode pull-out; they deal with it in the same way, application of ACSF.

hide / / print
ref: -0 tags: lieber mesh electronics SU-8 recording electrodes flexible polymer glass capillary date: 12-22-2017 00:14 gmt revision:0 [head]

PMID-29109247 Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology

  • Key change was the addition of multiple conductor traces per longitudinal mesh line; this allows them to get 64 or 128 channels per mesh without a dramatic increase in modulus.
  • The latitudinal / diagonal lines still displace tissue ...
  • And the injection mechanism, glass pipette, 650um OD, 400um ID, is pretty large, even for 128 channels.
  • Use carbon nanotube ink, custom CNC printer, to connect to FPC.
    • Pretty impressive that they can manipulate ~800nm thick Su-8 film intraop and have it work well!

hide / / print
ref: -0 tags: glassy carbon SU-8 pyrolysis CEC microelectrode stimulation stability platinum PEDOT date: 02-17-2017 00:05 gmt revision:2 [1] [0] [head]

A novel pattern transfer technique for mounting glassy carbon microelectrodes on polymeric flexible substrates

  • Use inert-atmosphere pyrolysis @ 900 - 1000 C of 20um SU-8 (which is aromatic) on a thermal oxide wafer.
  • Followed by spin & cure of PI.
  • Demonstrate strong carbonyl bonding of the glassy carbon with mechanical and FTIR testing.
  • Use of photosensitive PI allows through-vias to connect Cr/Au conductive traces.

PMID-28084398 Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity

  • Use EIS to show superior charge-injection properties + stability of glassy carbon electrodes vs. Pt electrodes.
    • GC lasted > 5e6 pulses; Pt electrodes delaminated after 1e6 pulses.
    • Hydrogen bonding (above) clearly superior than neat PI-Pt interface
  • GC electrodes were, true to their name, glassy and much smoother than the platinum electrodes.
  • Further reduced impedance with PEDOT-PSS coating.
    • PEDOT-PSS coating on glassy carbon was, in their hands, far more stable than PEDOT-PSS on platinum.
  • All devices, GC, PEDOT:PSS, and Pt, had similar biocompatibility in their assay (figure 7)

hide / / print
ref: -0 tags: Charles Lieber syringe-injectable electronics SU-8 chronic flexible date: 10-14-2016 23:30 gmt revision:1 [0] [head]

PMID-27571550 Stable long-term chronic brain mapping at the single-neuron level.

  • Fu TM, Hong G1, Zhou T1, Schuhmann TG, Viveros RD2, Lieber CM.
  • 8 months with only 800nm of Su-8 (400nm of insulation!!). This is both surprising and very impressive; we have to step up our game!
  • In a mouse, too - their surgical technique must be very good. Mice only live ~ 2 years anyway.
  • Figure 3 -- stability -- incredible.
  • Recording sites were bare platinum, 20um diameter; stimulation sites were also bare Pt, 150um dia.
    • No plating or mircowire-fets, so far as I can see; electrode impedances were stable at 200 - 600k (supplementary figure 12).

hide / / print
ref: -0 tags: berkeley airbears2 configuration linux debian 8.1 date: 08-13-2015 23:42 gmt revision:1 [0] [head]

hide / / print
ref: -0 tags: flexible polymer neural probes compliant MIT EPFL 2008 date: 12-22-2012 01:28 gmt revision:0 [head]

Demonstration of cortical recording using novel flexible polymer neural probes

  • Two layer platinum process minimizes probe size -- nice. Might be useful for our purposes.
  • used electrochemical etching to release the lithographically patterned devices from the sacrificial aluminum layer.
  • Impedance looks pretty high -- 500k at 1kHz.
  • They talk about PCA as though it's unusual to them (?)
  • Histology uncontrolled and un-quantitiative.

hide / / print
ref: -0 tags: Albin basal ganglia dopamine 1989 parkinsons huntingtons hemiballismus date: 03-02-2012 00:28 gmt revision:1 [0] [head]

PMID-2479133 The functional anatomy of basal ganglia disorders.

  • Matrix neurons mainly containing substance P mainly project upon the GPi or SNr
    • while those containing enkephalins project on the GPe.
  • Striosome neurons projecting to the SNc contain mainly substance P.
  • Classical hypothesis:
  • Hyperkinetic disorders, which are characterized by an excess of abnormal movements, are postulated to result from the selective impairment of striatal neurons projecting to the lateral globus pallidus.
    • These are suppressed by D2 receptor antagonists & exacerbated by dopamine agonists.
    • Chorea is a primary example.
    • Despite Huntingtons, traumatic, ischemic, or ablative lesions of the striatum in man or animals rarely produces chorea or atheosis (writhing movements).
    • In HD, cholinergic agonists will alleviate choreoatheosis, while anti-cholinergic drugs exacerbate it.
  • Hypokinetic disorders, such as Parkinson's disease, are hypothesized to result from a complex series of changes in the activity of striatal projection neuron subpopulations resulting in an increase in basal ganglia output.
    • opposite of HD, exacerbated by D2 antagonists and ameliorated by DA agonists, as well as anti-cholinergics.
  • Dystonia = the spontaneous assumption of unusual fixed postures lasting from seconds to minutes.

  • Standard model suggests that striatal lesions should result in spontaneous movements, while this is not the case in man or other mammals. (less inhibition on GPi / SNr -> greater susceptibility of the thalamus to competing programs (?))
  • hyperkinetic movements can be produced by infusing bicululline, a GABA receptor antagonist, into GPe -- silencing it.
  • In early HD, when chorea is most prominent, there is a selective loss of striatal neurons projecting to the LGP (enkephalin staining).
    • Substance P containing neurons are lost later in the disease.
  • Administration of D2 antagonists increases the synthesis of enkephalins and pre-proenkephalin mRNA in the striatum.
    • This presumably represents increases in neuronal activity.
    • Inhibition of GPe neurons decreases hyperkinetic movements? But STN is excitatory? This does not add up.
  • Hemiballismus may be caused by disinhibition of SNr (?) and the VA/VL/MD/CM-Pf thalamocortical projections.


  • In both PD and HD, there are both increases in the latency of initiation of saccades, slowing of saccadic velocity, and interruption of saccades.
    • In HD, there is an early loss of substance-P containing striatal terminals in the SNr, possibly resulting in over-inhibition of tectal neurons.
    • HD patients cannot supress saccades to flashed stimulus.
    • No abnormalities in saccadic control in tourette's syndrome.
  • Hikosaka: suggest that caudate neurons involved in the initiation of saccades are part of a mechanism in which sensory data are evaluated in the context of learned behaviors and anticipated actions, and then used to initiate behavior.

hide / / print
ref: Iansek-1980.04 tags: globus pallidus GPe GPi electrophysiology 1980 date: 02-29-2012 18:17 gmt revision:2 [1] [0] [head]

PMID-7411442 The monkey globus pallidus: neuronal discharge properties in relation to movement.

  • motor units are generally inactive during inactivity. the relationship to movement of the discharges of such neurons was found to be very specific
    • This is in comparison to other results, which report a sustained firing, esp in GPi.
  • the discharges (as analyzed through histograms) of many neurones were related to only a particular direction of movement about one joint in the right limb.
  • some discharges were related to multijoint movements -> probably due to control of contraction of particular muscles.
    • nonetheless, this relationship was a loose one; there is not a tight coupling between pallidal activity and muscle contraction.
  • some responded to ipsilateral as well as contralateral movements.
    • PMID-7925805 Unilateral leasions in the GP results in bilateral increase in reaction time. hence, GP is involved in initiation. RT speed eventually recovered.
  • only the posterior globus pallidus - well posterior to the maximum expansion - contained movement related cells.
    • the a-p stereotaxic coordinates were less useful than the location of the maximum mediolateral width of the structure.
    • cells occurred in clusters, separated by regoins of non-movement related.
  • cells in the internal segment had no such organization.
  • many of the non-movement related neurons were tonically active.
  • this was before there was A/D recording, apparently!

hide / / print
ref: -0 tags: distrupted oscillations Mallet 2008 6-OHDA globus pallidus date: 02-29-2012 01:15 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-19109506 Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity.

  • Rat 6-OHDA.
  • On rate model: Although synchronization of GP unit activity increased by almost 100-fold during beta oscillations, the mean firing rate of GP neurons decreased compared with controls.
  • Synchronized firing persisted across different brain states, suggesting hardwiring.
  • GP and STN are frequency aligned but phase skewed.
    • Lateral inhibition in GP seems essential / see model.
  • Suggest that GPe / STN could generate oscillations that propagate to the rest of the BG.
    • But then why is the cortex required?

hide / / print
ref: -0 tags: Cogan 2008 electrodes recording stimulation date: 02-05-2012 00:21 gmt revision:0 [head]

PMID-18429704 Neural stimulation and recording electrodes.

  • Electrical stimulation of nerve tissue and recording of neural electrical activity are the basis of emerging prostheses and treatments for spinal cord injury, stroke, sensory deficits, and neurological disorders. An understanding of the electrochemical mechanisms underlying the behavior of neural stimulation and recording electrodes is important for the development of chronically implanted devices, particularly those employing large numbers of microelectrodes. For stimulation, materials that support charge injection by capacitive and faradaic mechanisms are available. These include titanium nitride, platinum, and iridium oxide, each with certain advantages and limitations. The use of charge-balanced waveforms and maximum electrochemical potential excursions as criteria for reversible charge injection with these electrode materials are described and critiqued. Techniques for characterizing electrochemical properties relevant to stimulation and recording are described with examples of differences in the in vitro and in vivo response of electrodes.

hide / / print
ref: Romo-1998.03 tags: Romo ICMS stimulation discrimination flutter 1998 date: 01-06-2012 23:43 gmt revision:4 [3] [2] [1] [0] [head]

PMID-9537321[0] Somatosensory discrimination based on cortical microstimulation.

  • trained monkeys to discriminate flutter frequencies; showed it generalized to ICMS stimulation, in that they could compare mechanical and electrical frequencies.
  • Electrodes in area 3b of S1.
  • Showed that cortical neurons are entrained to peripheral stimulation freq.


[0] Romo R, Hernández A, Zainos A, Salinas E, Somatosensory discrimination based on cortical microstimulation.Nature 392:6674, 387-90 (1998 Mar 26)

hide / / print
ref: Najafi-1985.07 tags: Najafi original silicon michigan recording array 1985 MEA date: 01-06-2012 05:27 gmt revision:10 [9] [8] [7] [6] [5] [4] [head]

IEEE-1484848 (pdf) A high-yield IC-compatible multielectrode recording array.

  • Already talks about closed-loop control of a neuroprosthesis.
  • Started testing on-chip NMOS amplifiers.
  • tantalum and polysilicon conductors. some resistivity, but much less than the electrode interface.


Najafi, K. and Wise, K.D. and Mochizuki, T. A high-yield IC-compatible multichannel recording array Electron Devices, IEEE Transactions on 32 7 1206 - 1211 (1985)

hide / / print
ref: Velliste-2008.06 tags: Schwartz 2008 Velliste BMI feeding population vector date: 01-06-2012 00:19 gmt revision:1 [0] [head]

PMID-18509337[0] Cortical control of a prosthetic arm for self-feeding

  • Idea: move BMI into robotic control.
  • population vector control, which has been shown to be inferior to the Wiener filter.
  • 112 units for control in one monkey. 2 monkeys used.
  • 4D control -- x, y, z, gripper.
  • 1064 trials over 13 days, average success rate of 78%
  • Gripper opened as the arm returned to mouth. Works b/c marshmallows are sticky.


[0] Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB, Cortical control of a prosthetic arm for self-feeding.Nature 453:7198, 1098-101 (2008 Jun 19)

hide / / print
ref: notes-2007 tags: clementine BMI robot kinarm timarm 032807 date: 01-06-2012 00:07 gmt revision:14 [13] [12] [11] [10] [9] [8] [head]

  1. http://m8ta.com/tim/clementine.MOV -- opens with totem, MJPG compressor.
  2. http://m8ta.com/tim/timarm_servocontroller.JPG
  3. http://m8ta.com/tim/images/spikeInformation_shuffled.jpg
    1. shuffled information distribution -- high significance level ;)
  4. kinarm.
    1. http://www.hardcarve.com/tim/kinarm.JPG
    2. http://www.hardcarve.com/tim/kinarm2.JPG
    3. http://www.hardcarve.com/tim/kinarm3.JPG
  5. robot svg or timarm png
    1. http://www.hardcarve.com/tim/timarm/timarm_side.jpg
    2. http://m8ta.com/tim/robotPulleyDetail.png
  6. bmi predictions clem 032807
      1. x & y predictions
      1. x & y predictions
      1. z velocity predictions - pretty darn good, snr 2
    1. Movie of the day: http://m8ta.com/tim/clem032807_3dBMI.MPG
      1. cells for that day - 40 in all

hide / / print
ref: Kuperstein-1981.03 tags: MEA Michigan probe MIT 1981 date: 01-05-2012 02:27 gmt revision:3 [2] [1] [0] [head]

IEEE-4121195 (pdf) A Practical 24 Channel Microelectrode for Neural Recording in Vivo

  • Molybdenum substrate (??).
  • progenitor to the Michigan probe?


Kuperstein, Michael and Whittington, Douglas A. A Practical 24 Channel Microelectrode for Neural Recording in Vivo Biomedical Engineering, IEEE Transactions on BME-28 3 288 -293 (1981)

hide / / print
ref: Schmidt-1980.01 tags: BMI 1980 SUA M1 prosthetics Schmidt MEA date: 01-04-2012 22:59 gmt revision:14 [13] [12] [11] [10] [9] [8] [head]

PMID-6794389[0] Single neuron recording from motor cortex as a possible source of signals for control of external devices

  • also [1]
  • I guess this was the first published article claiming that motorneurons could be used to drive a prosthesis, and first clear attempt at long-term array recording (?)
  • recorded via arrays for up to 37 months!
    • only 2 of the 11 eelctrodes were recording at the time of sacrifice.
  • trained the monkey to perform an 8 target tracking task
    • with cortical neurons: 2.45 bits/second
    • with wrist flexion/extension: 4.48 bits/second
  • electrodes: {946} A new chronic recording intracortical microelectrode (1976!)
    • 25um iridium wires electropolished to a 1um tip; 1.5mm long.
    • electrodes float on the cortex; signals transmitted through 25um gold wire, which is in turn connected to a head-mounted connector.
    • iridium and gold are insulated with vapor-deposited parylene-C
    • electrode tips are exposed with a HV arc. (does this dull them? from the electromicrograph, it seems that it just makes them rougher.)
    • arrays of 12.
    • 1M impedance (average)
  • interesting: neural activity was recorded from at least 8 different neurons with this electrode during the course of the implant, indicating that it was migrating through cortical tissue.
    • the average recording time from the same electrode was 8 days; max 23 days.
  • second implant was more successful: maximium time recording from the same neuron was 108 days.
  • failure is associated with cracks in the parylene insulation (which apparently occurred on the grain boundaries of the iridium). "still only marginally reliable" (and still.. and still..)
  • they have operantly trained cortical units in another, earlier study.
  • have, effectively, 8 levels of activity, with feedback monkey has to match the proscribed firing rate.
  • > 50% rewarded trials = success for them; 26/28 of the neurons tested were eventually conditioned successfully.
  • looks like the monkey can track the target firing rate rather accurately. "the output of cortical cells can provide information output rates moderately less precise than the intact motor system. "
  • Monkey can also activated sequences of neurons: A, then AB, then B.
  • people have also tried conditioning individual EMG units; it is sometimes possible to control 2 different motor units in the same muscle independently, but in general only a single channel of information can be obtained from one muscle, and gross EMGs are fine for this.
    • Thus surface EMG is preferred.
    • you can get ~ 2.73 bits/sec with gross EMG on a human; 2.99 bits/sec (max) with a monkey.
  • they remind us, of course, that an enormous amount of work remains to be done.


hide / / print
ref: Fritsch-1870 tags: Fritsch Hitzig 1870 electrical stimulation date: 01-03-2012 23:31 gmt revision:2 [1] [0] [head]

PMID-19457461[0] Electric excitability of the cerebrum (Uber die elektrische Erregbarkeit des Grosshirns).

  • Seemingly the first successful demonstration of ICMS (or just ICS). A step forward from the vivisectionists and the people who cauterized the cortex with potash.
  • Obtained contralateral movements by bipolar stimulation to the anterior half of a dogs cerebral cortex.
  • Used quite primitive technology (e.g. cardboard cell battery), but not at all primitive reasoning and care with the experiment.
  • may have been inducing small seizures with their DC stimulation: "Frequently tonic contractions of the muscle masses involved appear, which only subside in their intensity after a long time." The translator later calls this 'tetanization'.
  • On brain death: 'It is the fact that with exsanguination the excitability of the brain sinks with enormous rapidity, and is almost extinguished even before death.' meanwhile, muscles and (peripheral) nerves react fine after death.
  • Were not able to stimulate the striatum with insulated electrodes.
  • Survival surgeries -- after extirpation of forelim M1, the dogs recovered, though exhibited weakness in contralateral side. This weakness eventually went away, though "... they clearly had only a deficient consciousness of the conditions of this limb. "


[0] Fritsch G, Hitzig E, Electric excitability of the cerebrum (Uber die elektrische Erregbarkeit des Grosshirns).Epilepsy Behav 15:2, 123-30 (2009 Jun)

hide / / print
ref: Doty-1956 tags: Doty 1958 conditioned reflexes stimulation date: 01-03-2012 07:05 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-13367871[0] Conditioned reflexes established to electrical stimulation of cat cerebral cortex.

  • One sentence: used ICMS to act as a CS for a CR (shock-avoidance) in cats. Not really ICMS, as electrodes were placed on the surface.
  • They suggest ICMS is a means for probing the cortex without going through that trouble and complex transform of the sensory nerves and PNS.
    • If only. ICMS is complex enough.
  • Loucks [6,7,8] used a buried induction coil! Have things advanced all that much? (They bring this up in that magnetic stimulation of the induction coil induces vibration, which the animal can feel.)
  • Use 'vitalium' screws to fix their plexiglas encased platinum wire electrode to the scull.
    • Relatively large electrodes, not in the cortex but resting upon it -- this is why the current was relatively high.
  • Monophasic ICMS, 50Hz, 2ms, 2 sec train, 4-6V (not current controlled).
    • Fixed this by putting a 10k resistor in series and recording current across that. approx 700uA stimulation current -- high!
  • Most of the cortex worked as a CS: stimulation of points distributed throughout the marginal, postlateral, middle suprasylvian, and middle and posterior ectosylvian gyri (Fig. 2).
  • Observed a narrow threshold for conditioning responses, e.g. 0.35mA would give only 1/5 correct, 0.45 4/5 correct.
  • Dura excised in these surgeries, since any stimulation of the dura is painful.
    • To control for this, they severed the trigeminal nerve.
  • gave strength / duration curves. (remember, monopolar).
  • deinervated the animals as control -- could feel nothing but the current delivered to their head!
  • Other controls: Loucks (7) showed that CR persisted with stimulation to the motor cortex after the limb that moved upon superthreshold stimulation was paralyzed.
  • "The present experiments fully confirm the thesis that CRs to cortical stimulation are in no way dependent on detectable motor effects."
  • Animals can also discriminate one frequency from another (30Hz vs 100Hz). Verified by Romo, much later.


[0] DOTY RW, LARSEN RM, RUTHLEDGE LT Jr, Conditioned reflexes established to electrical stimulation of cat cerebral cortex.J Neurophysiol 19:5, 401-15 (1956 Sep)

hide / / print
ref: Kennedy-1989.09 tags: Kennedy neurotrophic electrode recording fabrication 1989 electrophysiology date: 01-03-2012 03:21 gmt revision:2 [1] [0] [head]

PMID-2796391[0] The cone electrode: a long-term electrode that records from neurites grown onto its recording surface.

  • A piece of the sciatic nerve is placed in the glass cone before implantation in the cortex of a rat.
  • A neurite can be an axon or dendrite.


[0] Kennedy PR, The cone electrode: a long-term electrode that records from neurites grown onto its recording surface.J Neurosci Methods 29:3, 181-93 (1989 Sep)

hide / / print
ref: Darmanjian-2005.03 tags: recording wifi 802.11 DSP BMI Principe date: 01-03-2012 02:13 gmt revision:2 [1] [0] [head]

IEEE-1419566 (pdf) A Portable Wireless DSP System for a Brain Machine Interface

  • 1400Mw (yuck!!), large design, PCMCIA 802.11 card @ 1.8 Mbps, external SRAM for models
  • implemented LMS and as expected it's faster on the Texas Instruments C33 floating-point DSP.


Darmanjian, S. and Morrison, S. and Dang, B. and Gugel, K. and Principe, J. Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on 112 -115 (2005)

hide / / print
ref: Harris-2009.06 tags: Bartholow 1874 Mary experiment stimulation ICMS date: 12-29-2011 05:13 gmt revision:2 [1] [0] [head]

PMID-19286295[0] Probing the human brain with stimulating electrodes: The story of Roberts Bartholow’s (1874) experiment on Mary Rafferty

  • Excellent review / history.
  • Actual citation: Experimental investigations into the functions of the human brain" The American Journal of the medical Sciences 1874
  • Actual subject: Marry Rafferty
  • Around his time people were shifting from using intuition and observation to direct treatment to using empiricism & science, especially from work on laboratory animals.
  • One of the innovations that could not be tolerated by his colleagues was the "physiological investigations of drugs by the destruction of animal life." He was a bit of an outsider, and not terribly well liked.
  • Before then the cortex was seen to be insensitive to stimulation of any kind.
  • Ferrier 1974b: in the striatum all movements are integrated which are differentiated in the cortex" -- striatal stimulation produces general contraction, not specific contraction.
  • Ferrier 1873 was the first to discover that AC stimulation yielded more prolonged and natural movements than DC.
  • The Dura mater is extremely sensitive to pain.
  • Mary Rafferty seems to have had a tumor (he calls it an ulcer) in the meninges (epithelioma).
  • He probably spread infection into her brain through the stimulating needles.


[0] Harris LJ, Almerigi JB, Probing the human brain with stimulating electrodes: the story of Roberts Bartholow's (1874) experiment on Mary Rafferty.Brain Cogn 70:1, 92-115 (2009 Jun)

hide / / print
ref: -0 tags: Georgopoulos 1988 population vector tuning date: 12-20-2011 01:13 gmt revision:1 [0] [head]

PMID-3411362[0] Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population.

  • This is the paper where they do predictions, and show that they can offline 'decode' 3D reaching movements.
    • Pretty spiffy 3D graphics, too.
  • Used three analyses to estimate variability of the population vector.
    • 1. Random sampling of the experimentally observed population (N= 475), using the mean discharge rate of each cell to each direction.
    • 2. Same cell population, but variability of discharge was drawn from a normal distro estimated from the mean and variance of the trial-to-trial recordings.
    • 3. Random sampling + trial-to-trial variability.
  • Plot 95% confidence interval over population size for the estimated direction; asymtopes at about 15%. Why not measured in steradians?
  • Figure 4 looks to have good SNR, and they look to be dataheads.
  • Use a bunch of different weighting functions to calculate the population vector; no numerical optimization?
    • best one basically looks like normalized, mean-removed firing rate.


[0] Georgopoulos AP, Kettner RE, Schwartz AB, Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population.J Neurosci 8:8, 2928-37 (1988 Aug)

hide / / print
ref: -0 tags: Georgopoulos 1988 M1 population vector tuning 3D single unit date: 12-20-2011 00:58 gmt revision:2 [1] [0] [head]

PMID-3411363[0] Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins.

  • In comparison to the first experiment, where they showed that movement direction was encoded by single units within M1, here they varied the starting position of the movements.
  • tonic discharge of many cells varied in and orderly fashion with the position at which the hand was actively maintained in space.
  • however, cell activity changes were the same independent of movement onset and dependent on movement direction.
    • similar but not that similar -- vary based on tonic firing rate. See figure 9.


[0] Kettner RE, Schwartz AB, Georgopoulos AP, Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins.J Neurosci 8:8, 2938-47 (1988 Aug)

hide / / print
ref: Schwartz-1988.08 tags: Georgopoulos 1988 motor coding cortex population vector date: 12-20-2011 00:49 gmt revision:3 [2] [1] [0] [head]

PMID-3411361[0] Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement.

  • 475/568 (83%) of cells varied in an orderly fashion with movement -- tuned to a movement direction.
    • As before, binned the firing based on movement direction.
  • generalize 2-D results [1][2]
  • Totally awesome tracking system: a spark gap was attached to the monkey's wrist and was discharged every 20ms. The sonic signal was picked up by at least 3 of the 8 ultrasonic recievers placed at the corners of the workspace and the xyz coordinates were calculated from the sonic delays using a microprocessor-based system.
  • monkey(s) had to press lighted buttons (arcade buttons) within this workspace.
  • otherwise same materials / methods as before.
  • every effort was made to isolate initially negative-going action potentials, and indication that the neuron was less likely to be damaged.
    • fiber spikes are initially positive. Cite Mountcastle et al 1969.
  • EMG signals gained 3000 and bandpassed 100-500Hz. rather narrow, but normal I guess.
  • Neural data recorded as interspike intervals.
  • vectoral dot-product tuning of cells, with the coeficients set by multiple linear regression.
    • This is equivalent to cosine tuning.
  • rather complicated CUSUM for determining onset of activity - including inhibition.
  • as in the earlier study, 60% of cells were tuned in the reaction time, and 85% within the movement time.
  • EMG activity looks like it can be described with cosine tuning as well.
  • 3D tuning directed over the whole space.
  • Residuals of firing rates measured with respect to the tuning functions; residuals were mean zero and approximately the same spread, and were distributed equally over the 3D space.
  • movement latency about 300ms. pretty quick reaction time?
  • Got some pretty awesome graphics for 1986 :)
  • The discharge rate of motor cortical cells varies with the magnitude of force and that cells with higher thresholds are recruited at progressively higher forces (Hepp-Reymond et al 1978).
  • Murphy et al 1982 found that ICMS to M1 caused rotation about single joints, which is inconsistent with cosine tuning (would require complex tuning, or tuning to joints).
  • They argue that cosine tuning refects transformatino by the propriospinal system, which engages patterns of muscle activity.
    • Most PTNs can influence several motoneuron pools in the spinal cord. (Fetz and Finocchio 1975, Fetz and Cheney 1978, 1980 ... Lemon 1986, Cheney and Fetz 1985)
    • Suggest that PTNs related to the weighted combinations of muscles.


[0] Schwartz AB, Kettner RE, Georgopoulos AP, Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement.J Neurosci 8:8, 2913-27 (1988 Aug)
[1] Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT, On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex.J Neurosci 2:11, 1527-37 (1982 Nov)
[2] Thach WT, Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum.J Neurophysiol 41:3, 654-76 (1978 May)

hide / / print
ref: Georgopoulos-1982.11 tags: Georgopoulos 1982 motor tuning cortex M1 population vector date: 12-19-2011 23:52 gmt revision:1 [0] [head]

PMID-7143039 On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex.

  • eight directions 45deg intervals, 2D joystick, frictionless, LED tarkets in a blocked randomized experimental design.
    • MK made simultaneous saccades; saccade latency 150-170ms.
      • some motor cells responded to visual movement.
    • EMG activity began ~80ms before movement.
    • monkeys used both arms.
  • bell-shaped or cosine tuning in 75% of the cells.
    • This has also been described in the saccade system in the paramedian pontine reticular formation (Henn and Cohen 1976), the mesencelphatic reticular formation (Buttner eta la 1977) and the internal medullary lamina of the thalamus (Schlag and Schlag-Ney 1977)
  • cells tended to cluster by tuning in depth.
  • cells tended to respond to movement & small corrections to movement, but did not necessarily respond to non-task related movement. "Yet these same cells were frequently silent during other movements which also involved contraction of the same muscles [as used in the task]"
  • cell discharge was much stronger during active movements than during passive manipulations.
  • 64% of cells were activated before the earliest EMG changes; 87% before the onset of movement.
  • The famous one, where the population vector was formalized / conceived / validated.
  • most neurons begin firing ~ 100ms before movement begins.
  • useda PDP11/20 minicomputer to control the LEDs & data recording.
  • Thach 1978 -- approxmately equal proportions of motor cortical cells were related to muscle activity, hans position, and direction of intended movement Thach 1978) PMID-96223
  • single electrode Pt/Ir recording 2-3Mohm; recordings made for 6-7 hours.
  • cite georgopoulos 1983 -- they propose distributed population coding.
  • point out that the central problem -- upon which some progress has been made - is the translation between visual and motor coordinate frames.

hide / / print
ref: Carlton-1981.1 tags: visual feedback 1981 error correction movement motor control reaction time date: 12-06-2011 06:35 gmt revision:1 [0] [head]

PMID-6457106 Processing visual feedback information for movement control.

  • Vusual feedback can correct movement within 135ms.
  • Measured this by simply timing the latency from presentation of visual error to initiation of corrective movement.

hide / / print
ref: notes-0 tags: DNA transfection yasuda experiment8 date: 03-17-2008 20:11 gmt revision:2 [1] [0] [head]


dishdnanameconc ug/ululug

hide / / print
ref: engineering notes-0 tags: bluetooth CSR NXP headset radio telemetry 802.11 zigbee low-power date: 12-12-2007 06:10 gmt revision:26 [25] [24] [23] [22] [21] [20] [head]

the contenders:

  • NXP BGB210S, a 4th generation chip from Philip's spin-off NXP.
    • 3 x 5 x 1 mm (!!).
    • supports Bluetooth 2.0 + EDR.
      • the higher data rate is really targeted at decreasing the TX active time.
    • power consumption: 12ma @ 1.8v supply = 21.5mW
    • CMOS w/ near-zero intermediate frequency radio.
  • BGW211 802.11 system-on-a-chip, from NXP
    • 400mw Tx power, 300mw Rx - both too much, me thinks.
  • BCM4326
    • similar power figures (295mw rx, 425mw tx)
    • ultra-small 0.25mm WLCSP (!!)
    • one chip solution for 802.11b/g ; BCM4328 supports 802.11a, too.
  • Wi2wi w2cbw003 - 230ma tx, 210ma rx 802.11 module. too much.
  • G2 Microsystems , developers of 802.11B (11mbps) system-on-a-chip for RFID.
    • insanely low power dissipation! years on AA batteries! (based on 40s interval between data transmissions. 1.3mJ per transmission - an order of 500 lower than existing solutions. much lower static dissipation, too.
    • includes 32 bit RISC processor with 80kb ram, 320 kb flash/rom.
    • works with existing infrastructure, e.g. cisco.
    • article on the chip / product, may 2006.
    • http://www.gainspan.com/ -- competitors. they do not appear to have a product yet.
  • Freescale LP1070FC 802.11a/b/g, requires external PA, LNA, switch. no data on the power consumption... actually, the datasheet appears to be rather incomplete!
  • CSR UniFi-1 radio is far better, but I can't seem to find documentation for that, specifically the power dissipation.
    • well, let's see - 20 hours talk time with a 1500mAH battery = 75ma. not bad, i guess; TX power can be decreased for the short range we need.
  • BlueCore5 ; product brief, which includes more power info.
    • rather recently developed; is the silicon debugged? The datasheet is preliminary information.
    • 10 x 10mm, 0.8mm pitch 105 balls or 8x8 TFBGA.
    • 1.5V core, 1.8V-3.6V io, USB
    • bluetooth v2.0/2.1.
    • 64mips DSP on-chip.
      • 0.3 mA/MIPS at 1.5V. compare to Texas instruments TMS320VC5507 = 0.45ma/Mhz @ 1.2V core ~= 54Mw at 100mips; Kalimba ~= 30mw @64mips.
      • this is 2mips/channel. enough? damn, gotta keep the power low!
      • the Bluecore3 datasheet has more information on the DSP power consumption.
    • 16 Mbit flash, too!
    • BlueCore4 seems to be much better documented, but it does not include the DSP, which saves a lot on parts count.. as well as power.
  • Bluecore4
    • 8x8mm 96-bga,
    • with 6mbit flash!
    • bluetooth 2.0 / EDR.
    • current consumption of about 26ma @ 1.8V supply when in SCO HV3
  • Boroadcom BCM4326
    • single chip 802.11b/g solution, integrated Arm7 CPU
    • again, 300mW (not mA! smaller!) Rx, 400 mW Tx. That's still a lot of power.
  • Broadcom BCM2047
    • again, seems that these have yet to come out; details are scarce.
    • The belkin bluetooth 2.0 adapter that I bought at compusa uses a BCM2045.
  • CC2400, non-bluetooth - simpler!
  • Zarlink - ultra low power, 433Mhz ISM band biomedical tranciever.
    • about 7x7mm.
    • 3v supply, 2.7 should work, 5ma = 13.5mw (yesss!)
    • 800kbps raw data rate, max.
    • 2.45Ghz wakeup reciever (??)
    • seems to be designed for pacemakers & neurostimulators.
    • need to contact zarlink for the full data sheet.
  • RFM TR1100 - what the wolf lab uses for telemetry. OOK or ASK.
    • 1Mbps max.
    • only 1 channel, so far as i can tell...
    • 8ma @ 2.7V = 21.6mw.
    • integrated SAW filters = narrow bandwidth.
    • 10 x 6 mm size, minimal external components, though it does seem to require extra resistors.
    • really interesting method of obtaining RX input amplification stability - a SAW delay line, where the amplifiers are pulsed on at different times to permit the passage of RF energy. quote: "rf stability is obtained by distributing RF gain over time", as opposed to the superheterodyne solution of distributing gain over frequencies. If there were 100db of gain in 1 frequency, the amplifier is very likely to oscillate.
  • RFM TRC101
  • RFM TR3100 576 kbps ASK, -85dbm 10e-3 error rate.
    • 10ma TX / 7ma RX
    • 11x9,65mm SM-20L package
    • kinda has a lot of external components.
    • 434 mhz operation.
  • ADF7025 Analog 431-464, 862-870, 902-928 ISM band FSK transceiver.
    • 20ma TX (28ma at +10dbm) , 20ma RX from 2.3 to 3.6V supply.
    • direct conversion: zero IF.
    • SPI interface (plus a bunch of other signals).
    • 384kbps max data rate.
    • 7mm x 7mm 48 lead CSP
  • CC1101 (chipcon was acquired by TI)
    • 500kbps FSK, GFSK, MSK, OOK, ASK transmit/receive. 500kbps is only available in MSK, minimum-shift keying mode.
      • -84dbm receiver sensitivity @ 500kbps.
    • same bands as above + a bit more margin.
    • suitable for frequency hopping systems.
    • QLP 4mm x 4mm package
    • 16ma TX (32.3 at +10dbm), 16ma RX
    • 1.8 - 3.6V operation.
  • Freescale MC13192, Zigbee compliant transciever, 2.405 - 2.480 Mhz, 5mhz channels, 2Mchip/sec over the air data rate, 200kbps practical rate.
    • 30ma TX @ 0dbm, 37ma RX.
    • 5mm x 5mm package
    • full Zigbee PHY support.
    • similar device from ember - 35ma TX / 35ma RX, 2.1-3.5V, 7x7mm, includes microprocessor.
    • MC13201 - also targeted at 802.15.4 compliance.
      • good to 250kbps, 5.0 mhz channels, DSSS, 2.0 - 3.4V,
      • requires external transmit/receive switch
      • 30ma TX / 37ma RX
      • 5 x 5mm package
  • TI / Chipcon CC2430 - 27ma TX / 27ma RX, with microcontroller, 7x7mm package, quick power-up.
  • Cypress wireless USB
    • 2.4ghz, 1mbps, DSSS encoding (like zigbee) -- DSSS reduces the data rate, of course; the data rate over the air is always 1mbps.
      • the favored rate is 8x DSSS, where each symbol encodes one byte (8 bits) but requires 32 or 64 chips for transmission (resulting in a net rate of 250kbsp or 125 kbps, like zigbee. )
    • 21ma normal operating current @-5dbm, 1.8V to 3.6V
    • 6mm x 6mm 40-lead package
    • document above is a generally good overview of the complexities of this type of design.
  • SC1211
    • 110kbps, UHF transceiver (~863 - 960mhz). very low power consumption in RX: 3ma / TX: 25ma @ +10dbm out
    • out November 2007.
    • competitor to below -- much lower RX power (and lower rate).
    • includes 64byte fifo, data whitening, etc.
  • advance info from Maxim
    • very low power TX: 4ma @ -10dbm, RX: 150ua Hey.. that's lower power than most PLL, VCO, & PA put together!
    • OOK, ~116kbps.
  • Nordic nRF24L01 - THE BEST (so far!)
    • datasheet.
    • 12ma TX/RX, 2.1 3.6V
    • 2mbps over-the-air rate, GFSK, 10m range (better with a bigger antenna)
    • 4x4mm 20 pin package.
    • 125 selectable channels.
    • allows clock sharing with a microprocessor, e.g. the blackfin, provided it exceeds the 60ppm specification.
    • 22ua power consumption in standby-1 mode (transition from this state to RX/TX in 130us), 320ua power consumption in standby-2 mode (ready to transition to TX)
      • it is important to never keep the nRF24L01 in TX mode for more than 4ms at a time (!)
    • i think the designer's confidence showes through the specification sheet: they are proud of the chip & it's specifications, which is a very good thing. it means they put some pride and passion into it.
    • development board - need to buy! They also [distribute the IC http://www.sparkfun.com/commerce/product_info.php?products_id=690], yay!

hide / / print
ref: bookmark-0 tags: volvo 850 s70 turbo boost wastegate MBC ECU date: 10-20-2007 18:28 gmt revision:0 [head]

http://au.geocities.com/ozbrick850/engine-turbo-keithspage.html -- excellent discussions of the volvo 850 / S70 T5

hide / / print
ref: bookmark-0 tags: RF penetration tissue 1978 date: 07-24-2007 04:15 gmt revision:2 [1] [0] [head]


  • from the perspective of NMR imaging.
  • gives the penetration depths & phase-shifts for RF waves from 1 - 100Mhz. I can obly assume that it is much worse for 400Mhz and 2.4Ghz.
    • that said, Zarlink's MICS transceiver works from the GI tract at 400mhz with low power, suggesting that the attenuation can't be too too great.
  • includes equations used to derive these figures.
  • document describing how various antenna types are effected by biological tissue, e.g. a human head.

even more interesting: wireless brain machine interface

hide / / print
ref: Harris-1998.08 tags: motor_control error variance optimal_control 1998 wolpert date: 0-0-2007 0:0 revision:0 [head]

PMID-9723616[0] Signal-dependent noise determines motor planning

  • key idea: neural control signals are corrupted by noise whose variance increases with the size of the control signal
  • this idea is sufficient to explain a number of features of human motor behavior.