{1510} revision 7 modified: 04-08-2020 01:16 gmt

SCAN: learning hierarchical compositional concepts

  • From DeepMind, first version Jul 2017 / v3 June 2018.
  • Starts broad and strong:
    • "The seemingly infinite diversity of the natural world from a relatively small set of coherent rules"
      • Relative to what? What's the order of magnitude here? In personal experience, each domain involves a large pile of relevant details..
    • "We conjecture that these rules dive rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts"
    • "If such representations are compositional and hierarchical, they can be recombined into an exponentially large set of new concepts."
    • "Compositionality is at the core of such human abilities as creativity, imagination, and language-based communication.
    • This addresses the limitations of deep learning, which are overly data hungry (low sample efficiency), tend to overfit the data, and require human supervision.
  • Approach:
    • Factorize the visual world with a Β\Beta -VAE to learn a set of representational primitives through unsupervised exposure to visual data.
    • Expose SCAN (or rather, a module of it) to a small number of symbol-image pairs, from which the algorithm identifies the set if visual primitives (features from beta-VAE) that the examples have in common.
      • E.g. this is purely associative learning, with a finite one-layer association matrix.
    • Test on both image 2 symbols and symbols to image directions. For the latter, allow irrelevant attributes to be filled in from the priors (this is important later in the paper..)
    • Add in a third module, which allows learning of compositions of the features, ala set notation: AND ( \cup ), IN-COMMON ( \cap ) & IGNORE ( \setminus or '-'). This is via a low-parameter convolutional model.
  • Notation:
    • q ϕ(z x|x)q_{\phi}(z_x|x) is the encoder model. ϕ\phi are the encoder parameters, xx is the visual input, z xz_x are the latent parameters inferred from the scene.
    • p theta(x|z x)p_{theta}(x|z_x) is the decoder model. xp θ(x|z x)x \propto p_{\theta}(x|z_x) , θ\theta are the decoder parameters. xx is now the reconstructed scene.
  • From this, the loss function of the beta-VAE is:
    • 𝕃(θ,ϕ;x,z x,β)=𝔼 q ϕ(z x|x)[logp θ(x|z x)]βD KL(q ϕ(z x|x)||p(z x)) \mathbb{L}(\theta, \phi; x, z_x, \beta) = \mathbb{E}_{q_{\phi}(z_x|x)} [log p_{\theta}(x|z_x)] - \beta D_{KL} (q_{\phi}(z_x|x)|| p(z_x)) where Β>1\Beta \gt 1
      • That is, maximize the auto-encoder fit (the expectation of the decoder, over the encoder output -- aka the pixel log-likelihood) minus the KL divergence between the encoder distribution and p(z x)p(z_x)
        • p(z)𝒩(0,I)p(z) \propto \mathcal{N}(0, I) -- diagonal normal matrix.
        • β\beta comes from the Lagrangian solution to the constrained optimization problem:
        • max ϕ,θ𝔼 xD[𝔼 q ϕ(z|x)[logp θ(x|z)]]\max_{\phi,\theta} \mathbb{E}_{x \sim D} [\mathbb{E}_{q_{\phi}(z|x)}[log p_{\theta}(x|z)]] subject to D KL(q ϕ(z|x)||p(z))<εD_{KL}(q_{\phi}(z|x)||p(z)) \lt \epsilon where D is the domain of images etc.
      • Claim that this loss function tips the scale too far away from accurate reconstruction with sufficient visual de-tangling (that is: if significant features correspond to small details in pixel space, they are likely to be ignored); instead they adopt the approach of the denoising auto-encoder ref, which uses the feature L2 norm instead of the pixel log-likelihood:
    • 𝕃(θ,ϕ;X,z x,β)=𝔼 q ϕ(z x|x)||J(x^)J(x)|| 2 2βD KL(q ϕ(z x|x)||p(z x)) \mathbb{L}(\theta, \phi; X, z_x, \beta) = -\mathbb{E}_{q_{\phi}(z_x|x)}||J(\hat{x}) - J(x)||_2^2 - \beta D_{KL} (q_{\phi}(z_x|x)|| p(z_x)) where J: WxHxC NJ : \mathbb{R}^{W x H x C} \rightarrow \mathbb{R}^N maps from images to high-level features.
      • This J(x)J(x) is from another neural network (transfer learning) which learns features beforehand.
      • It's a multilayer perceptron denoising autoencoder [Vincent 2010].
  • The SCAN architecture includes an additional element, another VAE which is trained simultaneously on the labeled inputs yy and the latent outputs from encoder z xz_x given xx .
  • In this way, they can present a description yy to the network, which is then recomposed into z yz_y , that then produces an image x^\hat{x} .
    • The whole network is trained by minimizing:
    • 𝕃 y(θ y,ϕ y;y,x,z y,β,λ)=1 st2 nd3 rd \mathbb{L}_y(\theta_y, \phi_y; y, x, z_y, \beta, \lambda) = 1^{st} - 2^{nd} - 3^{rd}
      • 1st term: 𝔼 q ϕ y(z y|y)[logp θ y(y|z y)] \mathbb{E}_{q_{\phi_y}(z_y|y)}[log p_{\theta_y} (y|z_y)] log-likelihood of the decoded symbols given encoded latents z yz_y
      • 2nd term: βD KL(q ϕ y(z y|y)||p(z y)) \beta D_{KL}(q_{\phi_y}(z_y|y) || p(z_y)) weighted KL divergence between encoded latents and diagonal normal prior.
      • 3rd term: λD KL(q ϕ x(z x|y)||q ϕ y(z y|y))\lambda D_{KL}(q_{\phi_x}(z_x|y) || q_{\phi_y}(z_y|y)) weighted KL divergence between latents from the images and latents from the description yy .
        • They note that the direction of the divergence matters; I suspect it took some experimentation to see what's right.
  • Final element! A convolutional recombination element, implemented as a tensor product between z y1z_{y1} and z y2z_{y2} that outputs a one-hot encoding of set-operation that's fed to a (hardcoded?) transformation matrix.
    • I don't think this is great shakes. Could have done this with a small function; no need for a neural network.
    • Trained with very similar loss function as SCAN or the beta-VAE.

  • Testing:
  • They seem to have used a very limited subset of "DeepMind Lab" -- all of the concept or class labels could have been implimented easily, e.g. single pixel detector for the wall color. Quite disappointing.
  • This is marginally more interesting -- the network learns to eliminate latent factors as it's exposed to examples (just like perhaps a Bayesian network.)
  • Similarly, the CelebA tests are meh ... not a clear improvement over the existing VAEs.