you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
hide / edit[8] / print
ref: -0 tags: coevolution fitness prediction schmidt genetic algorithm date: 09-14-2018 01:34 gmt revision:8 [7] [6] [5] [4] [3] [2] [head]

Coevolution of Fitness Predictors

  • Michael D. Schmidt and Hod Lipson, Member, IEEE
  • Fitness prediction is a technique to replace fitness evaluation in evolutionary algorithms with a light-weight approximation that adapts with the solution population.
    • Cannot approximate the full landscape, but shift focus during evolution.
    • Aka local caching.
    • Or adversarial techniques.
  • Instead use coevolution, with three populations:
    • 1) solutions to the original problem, evaluated using only fitness predictors;
    • 2) fitness predictors of the problem; and
    • 3) fitness trainers, whose exact fitness is used to train predictors.
      • Trainers are selected high variance solutions across the predictors, and predictors are trained on this subset.
  • Lightweight fitness predictors evolve faster than the solution population, so they cap the computational effort on that at 5% overall effort.
    • These fitness predictors are basically an array of integers which index the full training set -- very simple and linear. Maybe boring, but the simplest solution that works ...
    • They only sample 8 training examples for even complex 30-node solution functions (!!).
    • I guess, because the information introduced into the solution set is relatively small per generation, it makes little sense to over-sample or over-specify this; all that matters is that, on average, it's directionally correct and unbiased.
  • Used deterministic crowding selection as the evolutionary algorithm.
    • Similar individuals have to compete in tournaments for space.
  • Showed that the coevolution algorithm is capable of inferring even highly complex many-term functions
    • And, it uses function evaluations more efficiently than the 'exact' (each solution evaluated exactly) algorithm.
  • Coevolution algorithm seems to induce less 'bloat' in the complexity of the solutions.
  • See also {842}