m8ta
you are not logged in, login. new entry
text: sort by
tags: modified
type: chronology
{1405}
hide / edit[2] / print
ref: -0 tags: insertion speed neural electrodes force damage date: 06-01-2018 23:38 gmt revision:2 [1] [0] [head]

In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain

  • Targeted at CED procedures, but probably applicable elsewhere.
  • Used a blunted 32ga CA glue filled hypodermic needle.
  • Sprague-dawley rats.
  • Increased insertion speed corresponds with increased force, unlike cardiac tissue.
  • Greatuer surface dimpling before failure results in larger regions of deformed tissue and more energy storage before needle penetration.
  • In this study (blunt needle) dimpling increased with insertion speed, indicating that more energy was transferred over a larger region and increasing the potential for injury.
  • However, friction stresses likely decrease with insertion speed since larger tissue holes were measured with increasing insertion speeds indicating lower frictional stresses.
    • Rapid deformation results in greater pressurization of fluid filled spaces if fluid does not have time to redistribute, making the tissue effectively stiffer. This may occur in compacted tissues below or surrounding the needle and result in increasing needle forces with increasing needle speed.